0
R
XC2C384 CoolRunner-II CPLD
0
0
DS095 (v3.2) March 8, 2007
Product Specification
Features
Description
•
Optimized for 1.8V systems
The CoolRunner-II 384-macrocell device is designed for
both high performance and low power applications. This
lends power savings to high-end communication equipment
and high speed to battery operated devices. Due to the low
power stand-by and dynamic operation, overall system reli-
ability is improved
-
-
As fast as 7.1 ns pin-to-pin delays
As low as 14 μA quiescent current
•
•
Industry’s best 0.18 micron CMOS CPLD
-
-
Optimized architecture for effective logic synthesis
Multi-voltage I/O operation — 1.5V to 3.3V
This device consists of twenty four Function Blocks
inter-connected by a low power Advanced Interconnect
Matrix (AIM). The AIM feeds 40 true and complement inputs
to each Function Block. The Function Blocks consist of a 40
by 56 P-term PLA and 16 macrocells which contain numer-
ous configuration bits that allow for combinational or regis-
tered modes of operation.
Available in multiple package options
-
-
-
-
-
144-pin TQFP with 118 user I/O
208-pin PQFP with 173 user I/O
256-ball FT (1.0mm) BGA with 212 user I/O
324-ball FG (1.0mm) BGA with 240 user I/O
Pb-free available for all packages
•
Advanced system features
Additionally, these registers can be globally reset or preset
and configured as a D or T flip-flop or as a D latch. There
are also multiple clock signals, both global and local product
term types, configured on a per macrocell basis. Output pin
configurations include slew rate limit, bus hold, pull-up,
open drain and programmable grounds. A Schmitt-trigger
input is available on a per input pin basis. In addition to stor-
ing macrocell output states, the macrocell registers may be
configured as direct input registers to store signals directly
from input pins.
-
Fastest in system programming
1.8V ISP using IEEE 1532 (JTAG) interface
IEEE1149.1 JTAG Boundary Scan Test
Optional Schmitt-trigger input (per pin)
Unsurpassed low power management
·
-
-
-
·
DataGATE enable (DGE) signal control
-
-
-
Four separate I/O banks
RealDigital 100% CMOS product term generation
Flexible clocking modes
·
·
·
Optional DualEDGE triggered registers
Clock divider (divide by 2,4,6,8,10,12,14,16)
CoolCLOCK
Clocking is available on a global or Function Block basis.
Three global clocks are available for all Function Blocks as
a synchronous clock source. Macrocell registers can be
individually configured to power up to the zero or one state.
A global set/reset control line is also available to asynchro-
nously set or reset selected registers during operation.
Additional local clock, synchronous clock-enable, asynchro-
nous set/reset and output enable signals can be formed
using product terms on a per-macrocell or per-Function
Block basis.
-
Global signal options with macrocell control
·
Multiple global clocks with phase selection per
macrocell
·
·
Multiple global output enables
Global set/reset
-
-
Advanced design security
PLA architecture
·
·
Superior pinout retention
100% product term routability across function
block
A DualEDGE flip-flop feature is also available on a per mac-
rocell basis. This feature allows high performance synchro-
nous operation based on lower frequency clocking to help
reduce the total power consumption of the device.
-
-
Open-drain output option for Wired-OR and LED
drive
Optional bus-hold, 3-state or weak pullup on
selected I/O pins
Optional configurable grounds on unused I/Os
Mixed I/O voltages compatible with 1.5V, 1.8V,
2.5V, and 3.3V logic levels
Circuitry has also been included to divide one externally
supplied global clock (GCK2) by eight different selections.
This yields divide by even and odd clock frequencies.
-
-
The use of the clock divide (division by 2) and DualEDGE
flip-flop gives the resultant CoolCLOCK feature.
·
SSTL2-1, SSTL3-1, and HSTL-1 I/O compatibility
-
Hot pluggable
DataGATE is a method to selectively disable inputs of the
CPLD that are not of interest during certain points in time.
Refer to the CoolRunner™-II family data sheet for architec-
ture description.
© 2002--2007 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.
DS095 (v3.2) March 8, 2007
www.xilinx.com
1
Product Specification