CY7C1317CV18, CY7C1917CV18
CY7C1319CV18, CY7C1321CV18
18-Mbit DDR-II SRAM 4-Word
Burst Architecture
Features
Functional Description
■ 18-Mbit density (2M x 8, 2M x 9, 1M x 18, 512K x 36)
■ 300 MHz clock for high bandwidth
The CY7C1317CV18, CY7C1917CV18, CY7C1319CV18, and
CY7C1321CV18 are 1.8V Synchronous Pipelined SRAMs
equipped with DDR-II architecture. The DDR-II consists of an
SRAM core with advanced synchronous peripheral circuitry and
a two-bit burst counter. Addresses for read and write are latched
on alternate rising edges of the input (K) clock. Write data is
registered on the rising edges of both K and K. Read data is
driven on the rising edges of C and C if provided, or on the rising
edge of K and K if C/C are not provided. Each address location
is associated with four 8-bit words in the case of CY7C1317CV18
and four 9-bit words in the case of CY7C1917CV18 that burst
sequentially into or out of the device. The burst counter always
starts with a ‘00’ internally in the case of CY7C1317CV18 and
CY7C1917CV18. For CY7C1319CV18 and CY7C1321CV18,
the burst counter takes in the least two significant bits of the
external address and bursts four 18-bit words in the case of
CY7C1319CV18, and four 36-bit words in the case of
CY7C1321CV18, sequentially into or out of the device.
■ 4-word burst for reducing address bus frequency
■ Double Data Rate (DDR) interfaces
(data transferred at 600 MHz) at 300 MHz
■ Two input clocks (K and K) for precise DDR timing
❐ SRAM uses rising edges only
■ Two input clocks for output data (C and C) to minimize clock
skew and flight time mismatches
■ Echo clocks (CQ and CQ) simplify data capture in high-speed
systems
■ Synchronous internally self-timed writes
■ DDR-II operates with 1.5 cycle read latency when the DLL is
enabled
Asynchronous inputs include an output impedance matching
input (ZQ). Synchronous data outputs (Q, sharing the same
physical pins as the data inputs, D) are tightly matched to the two
output echo clocks CQ/CQ, eliminating the need to capture data
separately from each individual DDR SRAM in the system
design. Output data clocks (C/C) enable maximum system
clocking and data synchronization flexibility.
■ Operates similar to a DDR-I device with 1 cycle read latency in
DLL off mode
■ 1.8V core power supply with HSTL inputs and outputs
■ Variable drive HSTL output buffers
■ Expanded HSTL output voltage (1.4V–VDD
)
All synchronous inputs pass through input registers controlled by
the K or K input clocks. All data outputs pass through output
registers controlled by the C or C (or K or K in a single clock
domain) input clocks. Writes are conducted with on-chip
synchronous self-timed write circuitry.
■ Available in 165-Ball FBGA package (13 x 15 x 1.4 mm)
■ Offered in both Pb-free and non Pb-free packages
■ JTAG 1149.1 compatible test access port
■ Delay Lock Loop (DLL) for accurate data placement
Configurations
CY7C1317CV18 – 2M x 8
CY7C1917CV18 – 2M x 9
CY7C1319CV18 – 1M x 18
CY7C1321CV18 – 512K x 36
Selection Guide
Description
300 MHz
300
278 MHz
278
250 MHz
250
200 MHz
200
167 MHz
167
Unit
MHz
mA
Maximum Operating Frequency
Maximum Operating Current
x8
x9
770
720
670
580
515
770
720
670
580
515
x18
x36
810
760
700
600
540
890
830
765
655
600
Cypress Semiconductor Corporation
Document Number: 001-07161 Rev. *B
•
198 Champion Court
•
San Jose, CA 95134-1709
•
408-943-2600
Revised September 26, 2007
[+] Feedback