5秒后页面跳转
CY23020LFI-3T PDF预览

CY23020LFI-3T

更新时间: 2024-02-26 03:01:40
品牌 Logo 应用领域
赛普拉斯 - CYPRESS 时钟驱动器逻辑集成电路
页数 文件大小 规格书
9页 112K
描述
10-output, 400-MHz LVPECL Zero Delay Buffer

CY23020LFI-3T 技术参数

是否无铅: 含铅是否Rohs认证: 不符合
生命周期:Obsolete零件包装代码:QFN
包装说明:7 X 7 MM, QFN-48针数:48
Reach Compliance Code:compliantHTS代码:8542.39.00.01
风险等级:5.85系列:23020
输入调节:DIFFERENTIALJESD-30 代码:S-XQCC-N48
JESD-609代码:e0长度:7 mm
逻辑集成电路类型:PLL BASED CLOCK DRIVER功能数量:1
反相输出次数:端子数量:48
实输出次数:9最高工作温度:85 °C
最低工作温度:-40 °C输出特性:3-STATE
封装主体材料:UNSPECIFIED封装代码:HVQCCN
封装等效代码:LCC48,.27SQ,20封装形状:SQUARE
封装形式:CHIP CARRIER, HEAT SINK/SLUG, VERY THIN PROFILE峰值回流温度(摄氏度):240
电源:3.3 V认证状态:Not Qualified
Same Edge Skew-Max(tskwd):0.15 ns座面最大高度:1 mm
子类别:Clock Drivers最大供电电压 (Vsup):3.465 V
最小供电电压 (Vsup):3.135 V标称供电电压 (Vsup):3.3 V
表面贴装:YES温度等级:INDUSTRIAL
端子面层:TIN LEAD端子形式:NO LEAD
端子节距:0.5 mm端子位置:QUAD
处于峰值回流温度下的最长时间:30宽度:7 mm
最小 fmax:400 MHzBase Number Matches:1

CY23020LFI-3T 数据手册

 浏览型号CY23020LFI-3T的Datasheet PDF文件第1页浏览型号CY23020LFI-3T的Datasheet PDF文件第2页浏览型号CY23020LFI-3T的Datasheet PDF文件第4页浏览型号CY23020LFI-3T的Datasheet PDF文件第5页浏览型号CY23020LFI-3T的Datasheet PDF文件第6页浏览型号CY23020LFI-3T的Datasheet PDF文件第7页 
CY23020-3  
Inserting Other Devices in Feedback Path  
Table 2. Frequency Range Setting  
RANGE  
Output Frequency Range  
Due to the fact that the device has an external feedback path  
the user has a wide range of control over its output to input  
skewing effect. One of these is to be able to synchronize the  
outputs of an external clock that is resultant from any of the  
output clocks. This implementation can be applied to any  
device (ASIC, multiple output clock buffer/driver, etc.) which is  
put into the feedback path.  
0
1
100–200 MHz  
200–400 MHz  
Table 3. Frequency Multiplication Table  
MUL  
Output Frequency  
Referring to Figure 1, if the traces between the ASIC/buffer  
and the destination of the clock signal(s) (A) are equal in length  
to the trace between the buffer and the FBIN pin (B), the  
signals at the destination(s) device (C) will be driven high at  
the same time the Reference clock provided to the ZDB goes  
high. Synchronizing the other outputs of the ZDB to the outputs  
from the ASIC/Buffer is more complex however, as any propa-  
gation delay in the ASIC/Buffer must be accounted for.  
0
1
= REF  
= 2 * REF  
How to Implement Zero Delay  
Typically, ZDBs multiply (fan-out) single-clock signals quantity  
while simultaneously reducing or mitigating the time delay  
associated with passing the clock through a buffering device.  
In many cases the output clock is adjusted, in phase, to occur  
later or more often before the device’s input clock to  
compensate for a design’s physical delay inadequacies. Most  
commonly this is done using a simple PCB trace as a time  
delay element. The longer the trace the earlier the output clock  
edges occur with respect to the reference input clock edges.  
There are constraints when inserting other devices. If the  
devices contain PLLs or excessively long delay times they can  
easily cause the overall clocking system to become unstable  
as the components interact. For these designs it is advisable  
to contact Cypress for applications support.  
Reference  
Signal  
C
In this way such effects as undesired transit time of a clock  
signal across a PCB can be compensated for.  
Zero  
Delay  
Buffer  
ASIC/  
Buffer  
Feedback  
Input  
A
B
Figure 1. Output Buffer in Feedback Path  
Table 4. Absolute Maximum Ratings[3]  
Parameter  
Description  
Voltage on any VDD pin with respect to GND  
Voltage on any input pin with respect to GND  
Storage Temperature  
Rating  
–0.5 to +5.0  
–0.5 to VDD + 0.5  
–65 to +150  
–40 to 85  
Unit  
V
VDD  
VIN  
TSTG  
TA  
V
°C  
°C  
°C  
Operation Temperature (QFN)  
TJ  
Junction Temperature  
135  
[4]  
Table 5. PECL DC Output Specification  
VCC = 3.135  
VCC = 3.3  
VCC = 3.465  
Parameter Description  
Conditions  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
2
2.6  
2.165  
2.765  
VOH  
VOL  
1.835  
2.435  
1.3  
–1.3  
–2  
1.135  
–1.3  
1.735  
–0.7  
1.9  
1.465  
–1.3  
2.065  
–0.7  
–0.7  
VOH (rel to VCC  
)
–2  
–1.4  
–1.4  
–2  
–1.4  
VOL(rel to VCC  
)
These result in the following mid point values:[4]  
VMID ((VOH + VOL)/2)  
1.485  
–1.65  
2.085  
–1.05  
1.65  
2.25  
1.815  
–1.65  
2.415  
–1.05  
–1.65  
–1.05  
VMID Relative to VCC  
Notes:  
3. Stresses greater than those listed in this table may cause permanent damage to the device. These represent a stress rating only. Operation of the device at  
these or any other conditions above those specified in the operating sections of this specification is not implied. Maximum conditions for extended periods may  
affect reliability.  
4. The midpoint voltage is average value of a waveform. For differential signals the midpoint is assumed to be the same for both the true and complement since  
the VOH and VOL of both the true and complement signals in general should be the same. VMID is not necessarily equal to the differential crossover voltage,  
which may be skewed if there is differential time delays between the signals.  
Document #: 38-07473 Rev. *A  
Page 3 of 9  

与CY23020LFI-3T相关器件

型号 品牌 描述 获取价格 数据表
CY23020ZC-1 CYPRESS 20-output, 200-MHz Zero Delay Buffer

获取价格

CY23020ZC-1 ROCHESTER 23020 SERIES, PLL BASED CLOCK DRIVER, 20 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PDSO48, 6 X

获取价格

CY23020ZC-1T CYPRESS 20-output, 200-MHz Zero Delay Buffer

获取价格

CY2302SC-1 CYPRESS Frequency Multiplier and Zero Delay Buffer

获取价格

CY2302SC-1T CYPRESS Frequency Multiplier and Zero Delay Buffer

获取价格

CY2302SI-1 CYPRESS Frequency Multiplier and Zero Delay Buffer

获取价格