CY7C1347F
4-Mbit (128K x 36) Pipelined Sync SRAM
Features
Functional Description[1]
The CY7C1347F is a 3.3V, 128K by 36 synchronous-pipelined
SRAM designed to support zero-wait-state secondary cache
with minimal glue logic.
• Fully registered inputs and outputs for pipelined oper-
ation
• 128K by 36 common I/O architecture
• 3.3V core power supply
• 2.5V/3.3V I/O operation
• Fast clock-to-output times
— 2.6 ns (for 250-MHz device)
— 2.6 ns (for 225-MHz device)
— 2.8 ns (for 200-MHz device)
— 3.5 ns (for 166-MHz device)
— 4.0 ns (for 133-MHz device)
CY7C1347F I/O pins can operate at either the 2.5V or the 3.3V
level, the I/O pins are 3.3V tolerant when VDDQ = 2.5V.
All synchronous inputs pass through input registers controlled
by the rising edge of the clock. All data outputs pass through
output registers controlled by the rising edge of the clock.
Maximum access delay from the clock rise is 2.6 ns (250-MHz
device)
CY7C1347F supports either the interleaved burst sequence
used by the Intel Pentium processor or a linear burst sequence
used by processors such as the PowerPC®. The burst
sequence is selected through the MODE pin. Accesses can be
initiated by asserting either the Address Strobe from
Processor (ADSP) or the Address Strobe from Controller
(ADSC) at clock rise. Address advancement through the burst
sequence is controlled by the ADV input. A 2-bit on-chip
wraparound burst counter captures the first address in a burst
sequence and automatically increments the address for the
rest of the burst access.
• User-selectable burst counter supporting Intel
Pentium interleaved or linear burst sequences
• Separate processor and controller address strobes
• Synchronous self-timed writes
• Asynchronous output enable
• JEDEC-standard 100-pin TQFP, 119-pin BGA and
165-pin fBGA packages
Byte write operations are qualified with the four Byte Write
Select (BW[A:D]) inputs. A Global Write Enable (GW) overrides
all byte write inputs and writes data to all four bytes. All writes
are conducted with on-chip synchronous self-timed write
circuitry.
• “ZZ” Sleep Mode option and Stop Clock option
• Available in Industrial and Commercial temperature
ranges
Three synchronous Chip Selects (CE1, CE2, CE3) and an
asynchronous Output Enable (OE) provide for easy bank
selection and output three-state control. In order to provide
proper data during depth expansion, OE is masked during the
first clock of a read cycle when emerging from a deselected
state.
Logic Block Diagram
A0, A1, A
ADDRESS
REGISTER
2
A[1:0]
MODE
Q1
ADV
CLK
BURST
COUNTER
AND
CLR
Q0
LOGIC
ADSC
ADSP
DQ
BYTE
WRITE REGISTER
D ,DQPD
DQ
BYTE
WRITE DRIVER
D ,DQPD
BWD
DQC ,DQP
BYTE
WRITE DRIVER
C
DQC ,DQP
BYTE
WRITE REGISTER
C
BW
C
OUTPUT
BUFFERS
OUTPUT
REGISTERS
MEMORY
ARRAY
DQ s
SENSE
AMPS
DQP
DQP
DQP
A
DQB ,DQP
BYTE
WRITE DRIVER
B
E
DQB ,DQP
BYTE
WRITE REGISTER
B
B
C
BW
B
DQPD
DQ
BYTE
WRITE DRIVER
A ,DQPA
DQ
BYTE
WRITE REGISTER
A ,DQPA
BWA
BWE
INPUT
REGISTERS
GW
ENABLE
REGISTER
PIPELINED
ENABLE
CE
CE
CE
1
2
3
OE
SLEEP
CONTROL
ZZ
Note:
1. For best-practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.
Cypress Semiconductor Corporation
•
3901 North First Street
•
San Jose, CA 95134
•
408-943-2600
Document #: 38-05213 Rev. *D
Revised April 9, 2004