S
M
D
S
c
h
o
t
t
k
y
B
a
r
r
i
e
r
D
i
o
d
e
A
r
r
a
y
s
S
M
D
D
i
o
d
e
s
S
p
e
c
i
a
l
i
s
t
C
D
B
V
6
-
5
4
T
/
A
D
/
C
D
/
S
D
/
B
R
-
G
F
o
r
w
a
r
r
d
C
u
r
r
e
n
t
:
0
.
2
A
R
R
e
o
v
e
s
e
V
o
l
t
a
g
e
:
3
0
V
H
S
D
e
v
i
c
e
F
e
a
t
u
r
e
s
S
O
D
-
3
6
3
-
L
F
o
a
w
f
o
r
w
a
c
r
d
v
o
l
t
a
g
e
d
r
o
p
n
.
0
.
.
0
0
8
7
7
1
(
(
2
1
.
.
2
8
0
0
)
)
-
-
-
s
t
s
w
i
t
h
i
n
g
.
0
U
P
l
t
r
a
-
s
m
a
l
l
s
g
u
u
r
f
a
c
d
e
r
m
o
g
u
t
r
p
a
c
k
s
a
g
e
.
a
N
o
j
u
n
c
t
o
i
o
n
a
r
i
n
f
o
t
r
a
n
i
e
n
t
n
d
E
S
D
0
0
.
.
0
0
5
4
3
5
(
(
1
1
.
.
3
1
5
5
)
)
p
r
v
t
e
c
a
t
i
n
.
-
A
a
i
l
b
l
e
i
n
l
e
a
d
F
r
e
e
v
e
r
s
i
o
n
.
0
0
.
0
0
0
6
(
(
0
0
.
.
1
0
5
8
)
M
e
C
C
c
h
a
n
i
c
a
l
d
a
t
a
.
0
3
)
0
.
0
0
5
4
6
7
(
(
1
1
.
4
2
0
0
)
)
0
0
.
.
0
4
4
5
(
(
1
0
.
.
1
0
0
)
)
0
.
.
-
a
a
s
e
e
:
S
O
D
-
3
a
n
2
3
,
M
o
l
d
e
d
0
P
l
a
s
t
i
c
0
3
9
0
0
.
0
0
9
6
5
(
(
2
2
.
.
4 5 )
1 5 )
-
s
m
a
t
e
r
i
l
:
U
L
9
4
V
-
f
l
a
m
m
a
b
i
l
i
t
y
r
e
t
a
r
d
a
n
t
.
8
c
l
a
r
s
m
s
i
i
f
i
c
a
t
i
o
.
-
T
e
n
a
l
s
:
S
2
o
l
d
e
r
a
b
n
l
e
p
e
r
M
I
L
-
S
T
D
-
2
0
2
o
,
M
e
t
h
o
d
0
.
0
0
4
(
0
.
1
0
)
m
a
x
0
8
0
0
.
.
0
0
1
0
4
6
(
(
0
0
.
.
3
1
5
5
)
)
0
.
0
1
0
(
0
.
2
5
)
m
i
n
-
-
-
M
a
r
k
g
k
i
n
g
:
O
r
i
e
n
t
a
t
i
o
:
S
e
p
b
e
p
d
i
a
g
)
r
a
m
s
b
e
l
w
W
e
i
h
t
:
0
.
0
0
6
e
g
r
a
m
s
(
a
s
r
o
o
x
.
D
i
m
e
n
s
i
o
n
s
i
n
i
n
c
h
e
s
a
n
d
(
m
i
l
l
i
m
e
t
e
r
s
)
M
a
r
i
n
g
:
S
e
d
i
a
g
r
a
m
e
l
w
A
1
C
2
C
2
C
1
A
2
A
2
A
C
C
2
A
2
A
C
C
1
C
2
C
1
C
2
C
3
1
1
C
1
C
1
A
2
A
1
A
1
C
2
A
1
C
1
A
C
A
1
A
2
A
C
A
1
A
2
A
3
2
2
C
D
B
V
6
-
5
4
A
D
-
G
*
C
D
B
V
6
-
5
4
C
D
-
G
*
C
D
B
V
6
-
5
4
S
D
-
G
*
C D
M
B
V
6
-
5
g
4
:
B
K
R
-
G
C
D
B
V
i
6
n
-
5
4
T
-
G
M
a
r
k
i
n
g
:
K
L
6
M
a
r
k
i
n
g
:
K
L
7
M
a
r
k
i
n
g
:
K
L
8
a
r
k
i
n
L
B
M
a
r
k
g
:
K
L
A
*
S
y
m
m
e
t
r
i
c
a
l
c
o
n
f
i
g
u
r
a
t
i
o
n
,
n
o
o
r
i
e
n
t
a
t
i
o
n
i
n
d
i
c
a
t
o
r
.
O
C
M
a
x
i
m
u
m
R
a
t
i
n
g
(
a
t
T
A
=
2
5
u
n
l
e
s
s
o
t
h
e
r
w
i
s
e
n
o
t
e
d
)
S
y
m
b
o
l
P
a
r
a
m
e
t
e
r
L
i
m
i
t
s
U
n
i
t
P
e
a
k
r
e
p
e
t
i
t
i
v
e
r
e
v
e
r
s
e
v
o
l
t
a
g
e
e
V
R
R
M
W
o
r
k
i
n
g
p
e
a
k
r
e
v
e
r
s
e
v
o
l
t
a
g
V
R
W
M
3
0
V
D
C
b
l
o
c
k
i
n
g
v
o
l
t
a
g
u
r
e
s
V
R
F
o
r
w
w
a
r
d
c
o
n
t
i
n
u
o
c
u
r
r
e
n
t
(
N
o
t
e
1
)
I
F
2
0
0
0
0
2
0
0
0
0
5
m
A
R
e
p
e
t
i
t
i
v
e
p
r
e
g
a
k
f
o
w
a
r
d
c
u
r
r
e
n
t
(
N
o
t
e
1
)
I
I
F
R
M
3
6
2
6
m
m
A
F
P
T
o
r
a
r
d
s
s
u
e
c
u
r
r
e
n
t
(
N
o
t
e
1
)
@
t
<
1
.
0
s
F
S
M
A
o
h
w
e
r
d
i
s
i
p
a
t
i
o
n
(
N
o
t
e
1
)
P
D
m
W
O
e
r
m
a
l
r
e
s
i
s
t
a
n
c
e
,
j
u
n
t
c
t
i
o
n
t
o
a
m
b
i
e
n
t
a
i
r
(
N
o
t
e
1
)
R
θ
J
A
S
C
/
W
O
O
p
e
r
a
t
i
o
n
a
n
d
s
t
o
r
a
g
e
e
m
p
e
r
a
t
u
r
e
r
a
n
g
e
T
J
,
T
T
G
-
6
5
~
+
1
2
5
C
O
C
E
l
e
c
t
r
i
c
a
l
C
h
a
r
a
c
t
e
r
i
s
t
i
c
s
(
a
t
T
A
=
2
5
u
n
l
e
s
s
o
t
h
e
r
w
i
s
e
n
o
t
e
d
)
S
y
m
b
o
l
Ty p
n
P
a
r
a
m
e
t
e
r
C
o
n
d
i
t
i
o
n
s
M
i
M
a
x
U
n
i
t
R
e
v
e
r
s
e
b
r
e
a
k
d
o
w
n
v
o
l
t
a
g
e
(
N
o
t
e
2
)
I
R
=
1
0
0
μ
A
V
(
B
R
)
R
3
0
V
I
I
I
I
I
F
F
F
F
F
=
=
=
=
=
0
1
1
3
1
.
1
m
A
2
3
4
5
4
2
0
0
0
m
A
0
m
V
F
o
r
w
a
r
d
e
v
o
l
t
a
g
e
0
0
0
m
A
V
F
0
0
m
A
0
m
A
1
0
0
0
μ
A
F
S
R
e
v
e
r
s
l
e
a
k
a
g
e
c
u
r
r
e
n
t
(
N
o
t
e
2
)
V
V
R
=
2
5
V
I
R
2
T
o
t
a
l
c
a
p
a
c
i
t
a
n
c
e
R
=
1
.
0
V
,
f
=
1
t
.
0
M
H
.
z
C
T
1
0
p
n
R
e
v
e
r
s
e
r
e
c
o
v
e
r
y
t
i
m
e
I
F
=
I
R
=
1
0
m
A
o
I
R
=
1
.
0
m
A
,
R
L
=
1
0
0
Ω
t
r
r
5
N
o
t
.
.
e
D
S
s
:
1
2
e
v
i
c
e
d
m
u
o
a
u
t
n
o
t
n
e
d
o
s
n
t
F
u
R
-
4
P
u
C
s
B
,
1
×
0
.
i
8
n
5
i
×
0
.
0
6
s
2
e
i n c h .
l f - h e a t i n g e f f e c t
h
o
r
t
r
i
t
e
p
l
s
e
e
d
t
o
m
m
i
z
e
R
E
V
:
A
1
P
a
g
e
Q
W
-
B
A
0
1
5