5秒后页面跳转
CY7C1513KV18-250BZC PDF预览

CY7C1513KV18-250BZC

更新时间: 2024-11-05 06:51:43
品牌 Logo 应用领域
赛普拉斯 - CYPRESS 静态存储器
页数 文件大小 规格书
31页 816K
描述
72-Mbit QDR II SRAM 4-Word Burst Architecture

CY7C1513KV18-250BZC 数据手册

 浏览型号CY7C1513KV18-250BZC的Datasheet PDF文件第2页浏览型号CY7C1513KV18-250BZC的Datasheet PDF文件第3页浏览型号CY7C1513KV18-250BZC的Datasheet PDF文件第4页浏览型号CY7C1513KV18-250BZC的Datasheet PDF文件第5页浏览型号CY7C1513KV18-250BZC的Datasheet PDF文件第6页浏览型号CY7C1513KV18-250BZC的Datasheet PDF文件第7页 
CY7C1511KV18, CY7C1526KV18  
CY7C1513KV18, CY7C1515KV18  
72-Mbit QDR® II SRAM 4-Word  
Burst Architecture  
Features  
Configurations  
Separate Independent Read and Write Data Ports  
Supports concurrent transactions  
CY7C1511KV18 – 8M x 8  
CY7C1526KV18 – 8M x 9  
CY7C1513KV18 – 4M x 18  
CY7C1515KV18 – 2M x 36  
333 MHz Clock for High Bandwidth  
4-word Burst for Reducing Address Bus Frequency  
Double Data Rate (DDR) Interfaces on both Read and Write  
Ports (data transferred at 666 MHz) at 333 MHz  
Functional Description  
The CY7C1511KV18, CY7C1526KV18, CY7C1513KV18, and  
CY7C1515KV18 are 1.8V Synchronous Pipelined SRAMs,  
equipped with QDR II architecture. QDR II architecture consists  
of two separate ports: the read port and the write port to access  
the memory array. The read port has dedicated data outputs to  
support read operations and the write port has dedicated data  
inputs to support write operations. QDR II architecture has  
separate data inputs and data outputs to completely eliminate  
the need to “turnaround” the data bus that exists with common  
I/O devices. Each port can be accessed through a common  
address bus. Addresses for read and write addresses are  
latched on alternate rising edges of the input (K) clock. Accesses  
to the QDR II read and write ports are independent of one  
another. To maximize data throughput, both read and write ports  
are equipped with DDR interfaces. Each address location is  
associated with four 8-bit words (CY7C1511KV18), 9-bit words  
(CY7C1526KV18), 18-bit words (CY7C1513KV18), or 36-bit  
words (CY7C1515KV18) that burst sequentially into or out of the  
device. Because data can be transferred into and out of the  
device on every rising edge of both input clocks (K and K and C  
and C), memory bandwidth is maximized while simplifying  
system design by eliminating bus ‘turnarounds’.  
Two Input Clocks (K and K) for precise DDR Timing  
SRAM uses rising edges only  
Two Input Clocks for Output Data (C and C) to minimize Clock  
Skew and Flight Time mismatches  
Echo Clocks (CQ and CQ) simplify Data Capture in High Speed  
Systems  
Single Multiplexed Address Input Bus latches Address Inputs  
for Read and Write Ports  
Separate Port Selects for Depth Expansion  
Synchronous Internally Self-timed Writes  
QDR® II operates with 1.5 Cycle Read Latency when DOFF is  
asserted HIGH  
Operates similar to QDR I Device with 1 Cycle Read Latency  
when DOFF is asserted LOW  
Available in x8, x9, x18, and x36 Configurations  
Full Data Coherency, providing Most Current Data  
Depth expansion is accomplished with port selects, which  
enables each port to operate independently.  
Core VDD = 1.8V (±0.1V); I/O VDDQ = 1.4V to VDD  
Supports both 1.5V and 1.8V I/O supply  
All synchronous inputs pass through input registers controlled by  
the K or K input clocks. All data outputs pass through output  
registers controlled by the C or C (or K or K in a single clock  
domain) input clocks. Writes are conducted with on-chip  
synchronous self-timed write circuitry.  
Available in 165-ball FBGA Package (13 x 15 x 1.4 mm)  
Offered in both Pb-free and non Pb-free Packages  
Variable Drive HSTL Output Buffers  
JTAG 1149.1 Compatible Test Access Port  
Phase Locked Loop (PLL) for Accurate Data Placement  
Table 1. Selection Guide  
Description  
333 MHz  
333  
300 MHz  
300  
250 MHz  
250  
200 MHz  
200  
167 MHz  
167  
Unit  
MHz  
mA  
Maximum Operating Frequency  
Maximum Operating Current  
x8  
x9  
600  
560  
490  
430  
380  
600  
560  
490  
430  
380  
x18  
x36  
620  
570  
500  
440  
390  
850  
790  
680  
580  
510  
Cypress Semiconductor Corporation  
Document Number: 001-00435 Rev. *G  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised September 23, 2009  
[+] Feedback  

CY7C1513KV18-250BZC 替代型号

型号 品牌 替代类型 描述 数据表
CY7C1513KV18-250BZXC CYPRESS

完全替代

72-Mbit QDR II SRAM 4-Word Burst Architecture

与CY7C1513KV18-250BZC相关器件

型号 品牌 获取价格 描述 数据表
CY7C1513KV18-250BZI CYPRESS

获取价格

72-Mbit QDR II SRAM 4-Word Burst Architecture
CY7C1513KV18-250BZXC CYPRESS

获取价格

72-Mbit QDR II SRAM 4-Word Burst Architecture
CY7C1513KV18-250BZXI CYPRESS

获取价格

72-Mbit QDR II SRAM 4-Word Burst Architecture
CY7C1513KV18-300BZC CYPRESS

获取价格

72-Mbit QDR II SRAM 4-Word Burst Architecture
CY7C1513KV18-300BZC INFINEON

获取价格

Synchronous SRAM
CY7C1513KV18-300BZI CYPRESS

获取价格

72-Mbit QDR-II SRAM 4-Word Burst Architecture
CY7C1513KV18-300BZXC CYPRESS

获取价格

72-Mbit QDR II SRAM 4-Word Burst Architecture
CY7C1513KV18-300BZXC INFINEON

获取价格

Synchronous SRAM
CY7C1513KV18-300BZXI CYPRESS

获取价格

72-Mbit QDR-II SRAM 4-Word Burst Architecture
CY7C1513KV18-333BZC CYPRESS

获取价格

72-Mbit QDR-II SRAM 4-Word Burst Architecture