FemtoClock® NG Universal Frequency
Translator
8T49N242
Datasheet
General Description
Applications
The 8T49N242 has one fractional-feedback PLL that can be used as
a jitter attenuator and frequency translator. It is equipped with four
integer output dividers, allowing the generation of up to four different
output frequencies, ranging from 8kHz to 1GHz. These frequencies
are completely independent of the input reference frequencies and
the crystal reference frequency. The device places virtually no
constraints on input to output frequency conversion, supporting all
FEC rates, including the new revision of ITU-T Recommendation
G.709 (2009), most with 0ppm conversion error. The outputs may
select among LVPECL, LVDS, HCSL or LVCMOS output levels.
• OTN or SONET / SDH equipment
• Gigabit and Terabit IP switches / routers including Synchronous
Ethernet
• Video broadcast
Features
• Supports SDH/SONET and Synchronous Ethernet clocks including
all FEC rate conversions
• 0.35ps RMS Typical Jitter (including spurs): 12kHz to 20MHz
• Operating Modes: Synthesizer, Jitter Attenuator
This makes it ideal to be used in any frequency synthesis application,
including 1G, 10G, 40G and 100G Synchronous Ethernet, OTN, and
SONET/SDH, including ITU-T G.709 (2009) FEC rates.
• Operates from a 10MHz to 50MHz fundamental-mode crystal or a
10MHz to 125MHz external oscillator
The 8T49N242 accepts up to two differential or single-ended input
clocks and a fundamental-mode crystal input. The internal PLL can
lock to either of the input reference clocks or just to the crystal to
behave as a frequency synthesizer. The PLL can use the second
input for redundant backup of the primary input reference, but in this
case, both input clock references must be related in frequency.
• Initial holdover accuracy of +50ppb.
• Accepts up to 2 LVPECL, LVDS, LVHSTL or LVCMOS input clocks
• Accepts frequencies ranging from 8kHz to 875MHz
• Auto and manual clock selection with hitless switching
• Clock input monitoring including support for gapped clocks
• Phase-slope limiting and fully hitless switching options to control
output clock phase transients
The device supports hitless reference switching between input
clocks. The device monitors both input clocks for Loss of Signal
(LOS), and generates an alarm when an input clock failure is
detected. Automatic and manual hitless reference switching options
are supported. LOS behavior can be set to support gapped or
un-gapped clocks.
• Generates four LVPECL / LVDS / HCSL or eight LVCMOS output
clocks
• Output frequencies ranging from 8kHz up to 1.0GHz
(differential)
• Output frequencies ranging from 8kHz to 250MHz (LVCMOS)
• Integer divider ranging from ÷4 to ÷786,420 for each output
The 8T49N242 supports holdover. The holdover has an initial
accuracy of ±50ppB from the point where the loss of all applicable
input reference(s) has been detected. It maintains a historical
average operating point for the PLL that may be returned to in
holdover at a limited phase slope.
• Programmable loop bandwidth settings from 0.2Hz to 6.4kHz
• Optional fast-lock function
• Four General Purpose I/O pins with optional support for status &
control:
• Two Output Enable control inputs provide control over the four
clocks
The PLL has a register-selectable loop bandwidth from 0.2Hz to
6.4kHz.
The device supports Output Enable & Clock Select inputs and Lock,
Holdover & LOS status outputs.
• Manual clock selection control input
• Lock, Holdover and Loss-of-Signal alarm outputs
The device is programmable through an I2C interface. It also
supports I2C master capability to allow the register configuration to
be read from an external EEPROM.
• Open-drain Interrupt pin
• Register programmable through I2C or via external I2C EEPROM
• Full 2.5V or 3.3V supply modes, 1.8V support for LVCMOS outputs,
GPIO and control pins
Programming with IDT’s Timing Commander software is
recommended for optimal device performance. Factory
pre-programmed devices are also available.
• -40°C to 85°C ambient operating temperature
• Package: 40QFN, lead-free (RoHS 6)
©2016 Integrated Device Technology, Inc.
1
REVISION 6, November 1, 2016