LPC435x/3x/2x/1x
32-bit ARM Cortex-M4/M0 MCU; up to 1 MB flash and 136 kB
SRAM; Ethernet, two High-speed USB, LCD, EMC
Rev. 5.4 — 10 January 2020
Product data sheet
1. General description
The LPC435X_3X_2X_1X are ARM Cortex-M4 based microcontrollers with Floating Point
Unit (FPU) for embedded applications which include an ARM Cortex-M0 coprocessor, up
to 1 MB of flash and 136 kB of on-chip SRAM, 16 kB of EEPROM memory, two
high-speed USB controllers, Ethernet, LCD, an external memory controller, a quad SPI
Flash Interface (SPIFI) that supports execute-in-place, advanced configurable peripherals
such as the State Configurable Timer (SCTimer/PWM) and the Serial General Purpose
I/O (SGPIO) interface, and multiple digital and analog peripherals. The
LPC435X_3X_2X_1X operate at CPU frequencies of up to 204 MHz.
The ARM Cortex-M4 is a 32-bit core that offers system enhancements such as low power
consumption, enhanced debug features, and a high level of support block integration. The
ARM Cortex-M4 CPU incorporates a 3-stage pipeline, uses a Harvard architecture with
separate local instruction and data buses as well as a third bus for peripherals, and
includes an internal prefetch unit that supports speculative branching. The ARM
Cortex-M4 supports single-cycle digital signal processing and SIMD instructions. A
hardware floating-point processor is integrated into the core.
The ARM Cortex-M0 coprocessor is an energy-efficient and easy-to-use 32-bit core,
which is upward code- and tool-compatible with the Cortex-M4 core. It is ideal for handling
control or peripheral handling to free up the Cortex-M4 for real-time processing. The
Cortex-M0 coprocessor offers up to 204 MHz performance with a simple instruction set
and reduced code size. In LPC43xx, the Cortex-M0 coprocessor hardware multiply is
implemented as a 32-cycle iterative multiplier.
For additional documentation related to the LPC43xx parts, see Section 17.
2. Features and benefits
Cortex-M4 Processor core
ARM Cortex-M4 processor (version r0p1), running at frequencies of up to
204 MHz.
Built-in Memory Protection Unit (MPU) supporting eight regions.
Built-in Nested Vectored Interrupt Controller (NVIC).
Hardware floating-point unit.
Non-maskable Interrupt (NMI) input.
JTAG and Serial Wire Debug (SWD), serial trace, eight breakpoints, and four
watch points.
Enhanced Trace Module (ETM) and Enhanced Trace Buffer (ETB) support.
System tick timer.