GS88118A(T/D)/GS88132A(D)/GS88136A(T/D)
250 MHz–133 MHz
100-Pin TQFP & 165-Bump BGA
Commercial Temp
512K x 18, 256K x 36
2.5 V or 3.3 V V
DD
9Mb Synchronous Burst SRAMs
Industrial Temp
2.5 V or 3.3 V I/O
Flow Through/Pipeline Reads
Features
The function of the Data Output register can be controlled by
the user via the FT mode pin (Pin 14). Holding the FT mode
pin low places the RAM in Flow Through mode, causing
output data to bypass the Data Output Register. Holding FT
high places the RAM in Pipeline mode, activating the rising-
edge-triggered Data Output Register.
• IEEE 1149.1 JTAG-compatible Boundary Scan
• 2.5 V or 3.3 V +10%/–10% core power supply
• 2.5 V or 3.3 V I/O supply
• LBO pin for Linear or Interleaved Burst mode
• Internal input resistors on mode pins allow floating mode pins
• Byte Write (BW) and/or Global Write (GW) operation
• Internal self-timed write cycle
SCD Pipelined Reads
• Automatic power-down for portable applications
• JEDEC-standard packages
The GS88118/36AT/D is a SCD (Single Cycle Deselect)
pipelined synchronous SRAM. DCD (Dual Cycle Deselect)
versions are also available. SCD SRAMs pipeline deselect
commands one stage less than read commands. SCD RAMs
begin turning off their outputs immediately after the deselect
command has been captured in the input registers.
Functional Description
Applications
The GS88118/36AT/D is a 9,437,184-bit high performance
synchronous SRAM with a 2-bit burst address counter.
Although of a type originally developed for Level 2 Cache
applications supporting high performance CPUs, the device
now finds application in synchronous SRAM applications,
ranging from DSP main store to networking chip set support.
Byte Write and Global Write
Byte write operation is performed by using Byte Write enable
(BW) input combined with one or more individual byte write
signals (Bx). In addition, Global Write (GW) is available for
writing all bytes at one time, regardless of the Byte Write
control inputs.
Controls
Sleep Mode
Addresses, data I/Os, chip enable (E1, E2), address burst
control inputs (ADSP, ADSC, ADV) and write control inputs
(Bx, BW, GW) are synchronous and are controlled by a
positive-edge-triggered clock input (CK). Output enable (G)
and power down control (ZZ) are asynchronous inputs. Burst
cycles can be initiated with either ADSP or ADSC inputs. In
Burst mode, subsequent burst addresses are generated
internally and are controlled by ADV. The burst address
counter may be configured to count in either linear or
interleave order with the Linear Burst Order (LBO) input. The
Burst function need not be used. New addresses can be loaded
on every cycle with no degradation of chip performance.
Low power (Sleep mode) is attained through the assertion
(High) of the ZZ signal, or by stopping the clock (CK).
Memory data is retained during Sleep mode.
Core and Interface Voltages
The GS88118/36AT/D operates on a 2.5 V or 3.3 V power
supply. All input are 3.3 V and 2.5 V compatible. Separate
output power (V
) pins are used to decouple output noise
DDQ
from the internal circuits and are 3.3 V and 2.5 V compatible.
Parameter Synopsis
-250 -225 -200 -166 -150 -133 Unit
Pipeline
3-1-1-1
t
2.5 2.7 3.0 3.4 3.8 4.0 ns
4.0 4.4 5.0 6.0 6.7 7.5 ns
KQ
tCycle
Curr (x18) 280 255 230 200 185 165 mA
Curr (x36) 330 300 270 230 215 190 mA
Flow
Through
2-1-1-1
t
5.5 6.0 6.5 7.0 7.5 8.5 ns
5.5 6.0 6.5 7.0 7.5 8.5 ns
KQ
tCycle
Curr (x18) 175 165 160 150 145 135 mA
Curr (x36) 200 190 180 170 165 150 mA
Rev: 1.04 3/2005
1/36
© 2001, GSI Technology
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.