MLX90308
Programmable Sensor Interface
Features and Benefits
Microprocessor-controlled signal conditioning for bridge-type sensors
Suited for low-cost sensors: reduction of non-linearity by programmable coefficients
External or internal temperature sensor for compensating temperature errors
Versatile output signal ranges: 4, 5, 10, or 11VDC; 4 to 20 mA loop
Mass calibration easy with 2400 or 9600 baud UART
Power supply from 6 to 35VDC
Applications
Pressure transducers
Accelerometers
Temperature sensor assemblies
Linear position sensors
Ordering Code
Product Code Temperature Code
Package Code
Option Code Packing Form Code
MLX90308
MLX90308
L
L
DF
DF
DAA-000
DAA-000
RE
TU
Legend:
Temperature Code:
Package Code:
Packing Form:
L for Temperature Range -40°C to 150°C
DF for SOIC300Mil
RE for Reel, TU for Tube
Ordering example:
MLX90308LDF-DAA-000-RE
Description
The MLX90308 is a dedicated microcontroller which performs signal conditioning for sensors wired in bridge or
differential configurations. Sensors that can be used include thermistors, strain gauges, load cells, pressure
sensors, accelerometers, etc. The signal conditioning includes gain adjustment, offset control, high order
temperature and linearity compensation. Compensation values are stored in EEPROM and are re-
programmable. Programming is accomplished by using a PC, with an interface circuit (level shifting and glue
logic), and provided software.
The application circuits can provide an output of an absolute voltage, relative voltage, or current. The output can
be range limited with defined outputs when
the signal is beyond the programmed limits.
Other features include alarm outputs and
level steering. The robust electrical design
allows the MLX90308 to be used where
most signal conditioning and sensor
interface circuits cannot be used. Voltage
regulation control is provided for absolute
voltage and current modes (external FET
required).
The standard package is a plastic SO16W.
The device is static-sensitive and requires
ESD precautions.
3901090308
Rev 007
Page 1
May/12