5秒后页面跳转
ADP3801AR PDF预览

ADP3801AR

更新时间: 2024-02-18 03:53:48
品牌 Logo 应用领域
亚德诺 - ADI 电池开关
页数 文件大小 规格书
20页 258K
描述
High Frequency Switch Mode Dual Li-Ion Battery Chargers

ADP3801AR 技术参数

是否无铅: 含铅是否Rohs认证: 不符合
生命周期:Active零件包装代码:SOIC
包装说明:SOP,针数:16
Reach Compliance Code:unknown风险等级:5.72
模拟集成电路 - 其他类型:BATTERY CHARGE CONTROLLER控制模式:CURRENT/VOLTAGE-MODE
控制技术:PULSE WIDTH MODULATION最大输入电压:20 V
最小输入电压:4.1 V标称输入电压:10 V
JESD-30 代码:R-PDSO-G16JESD-609代码:e0
长度:9.9 mm湿度敏感等级:NOT SPECIFIED
功能数量:1端子数量:16
最高工作温度:85 °C最低工作温度:-40 °C
标称输出电压:3.3 V封装主体材料:PLASTIC/EPOXY
封装代码:SOP封装形状:RECTANGULAR
封装形式:SMALL OUTLINE峰值回流温度(摄氏度):220
认证状态:COMMERCIAL座面最大高度:1.75 mm
表面贴装:YES切换器配置:SINGLE
最大切换频率:250 kHz温度等级:INDUSTRIAL
端子面层:TIN LEAD端子形式:GULL WING
端子节距:1.27 mm端子位置:DUAL
处于峰值回流温度下的最长时间:30宽度:3.9 mm
Base Number Matches:1

ADP3801AR 数据手册

 浏览型号ADP3801AR的Datasheet PDF文件第12页浏览型号ADP3801AR的Datasheet PDF文件第13页浏览型号ADP3801AR的Datasheet PDF文件第14页浏览型号ADP3801AR的Datasheet PDF文件第16页浏览型号ADP3801AR的Datasheet PDF文件第17页浏览型号ADP3801AR的Datasheet PDF文件第18页 
ADP3801/ADP3802  
The efficiency of this circuit is shown in Figure 26 for a charge  
current of 4 Amps. As expected, the efficiency increases with the  
output voltage, up to a maximum of 92% at 12.6 V.  
VCC  
15V  
10V  
5V  
VCC = 15V  
T
= +25؇C  
A
100  
I
= 4 Amps  
CHARGE  
VCC = 15V  
20ms/DIV  
I
= 4 AMP  
CHARGE  
I
(AVERAGE)  
FREQ = 200kHz  
CHARGE  
90  
80  
70  
60  
0A  
4A  
FREQ = 500kHz  
Figure 28. Source Current Due to Input Turn-On  
Feedback Loop Compensation Design  
The ADP3801 and ADP3802 have two separate feedback loops,  
the current control loop and the voltage control loop. Each loop  
must be compensated properly so that the circuit is stable dur-  
ing the entire charging cycle of a battery including the case where  
no battery is present. A series RC from the COMP pin to ground  
provides pole/zero compensation for both loops. The circuit in  
Figure 24 is properly compensated for the ADP3801 and  
ADP3802 and can be used as is.  
6
7
9
10  
11  
12  
13  
8
14  
OUTPUT – Volts  
Figure 26. Efficiency for ICHARGE = 4.0 Amp  
Figure 27 shows the output voltage transient when a battery  
load is snapped off. The output is charging a battery (which is  
currently discharged to 5 V) at 4.0 A when the battery is re-  
moved. The high charge current causes the output voltage to  
quickly increase and exceed the final battery voltage. However,  
the overvoltage comparator quickly controls the output and only  
a small overshoot results. When the battery is returned to the  
circuit, VBAT is pulled back down to the battery’s voltage.  
Figure 29 shows a typical ac model of the ADP3801/ADP3802.  
The current loop and voltage loop are comprised of voltage  
controlled current sources (GM stages). The gains given in the  
schematic and the impedance at the COMP node are typical  
values for both the ADP3801 and ADP3802. This model can be  
used to simulate the small signal ac behavior of the part using a  
SPICE-based simulator when paired with an ac model of a buck  
regulator. However, transient and dc behavior is not modeled  
with this model. The GM stages are actually modeled using the  
“Table” component in PSpice, which limits the dc levels to ease  
dc convergence. The coefficients on the schematic give the table  
coefficients. The input resistors (R1 and R2) are currently set  
for a 4.2 V final battery voltage. Use the accompanying table to  
adjust R1 and R2 for the other voltage options. Doing so is  
important to properly set the voltage loop gain.  
14V  
12V  
10V  
8V  
6V  
V
= 12.6V  
BAT  
V
R1  
4.2V 173k⍀  
8.4V 229k⍀  
R2  
BAT  
GM1  
I
= 4 AMP  
CHARGE  
CS+  
VCC = 15V  
50ms/DIV  
112k⍀  
56k⍀  
12.6V 247.7k37.3k⍀  
CS–  
CH1  
2.00V  
M50.0ms CH 1  
TIME – ms  
10.0V  
g
= 1E – 4  
m
(0,0) (0.2, 20E – 6)  
I1  
100A  
GM2  
Figure 27. Output Voltage Transient Due to Battery Snap  
Off  
ISET  
The behavior of the circuit when it is powered on with a dead  
battery inserted is important to check to make sure that the  
charger does not exhibit irregular behavior during power-up. In  
this case, the ADP3801 needs to regulate the output current to  
4.0 A. Figure 28 shows the average Si4463 source current  
under such a condition. When the input power is applied to the  
charger, the source current ramps up in a controlled manner  
due to the ADP3801’s soft start.  
g
= 8E – 3  
R3  
100k⍀  
m
(–12.5m, –200E – 6) (12.5m,0)  
GM3  
E4  
V1  
1.65V  
OUT  
R1  
173k⍀  
R4  
4M⍀  
GAIN = 1V/V  
V
BAT  
g
= 1.6E – 3  
R2  
112k⍀  
m
(–62.5m, –200E – 6) (62.5m,0)  
Figure 29. AC Behavioral SPICE Model for the ADP3801  
and ADP3802  
REV. 0  
–15–  

与ADP3801AR相关器件

型号 品牌 获取价格 描述 数据表
ADP3801AR-REEL ROCHESTER

获取价格

BATTERY CHARGE CONTROLLER, 250 kHz SWITCHING FREQ-MAX, PDSO16, SOIC-16
ADP3802 ADI

获取价格

High Frequency Switch Mode Dual Li-Ion Battery Chargers
ADP3802_15 ADI

获取价格

High Frequency Switch Mode Dual Li-Ion Battery Chargers
ADP3802AR ADI

获取价格

High Frequency Switch Mode Dual Li-Ion Battery Chargers
ADP3802AR ROCHESTER

获取价格

2-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO16, SOIC-16
ADP3804 ADI

获取价格

High Frequency Switch Mode Li-Ion Battery Charger
ADP3804JRU ADI

获取价格

High Frequency Switch Mode Li-Ion Battery Charger
ADP3804JRU-12.5-R7 ADI

获取价格

IC BATTERY CHARGE CONTROLLER, PDSO24, TSSOP-24, Switching Regulator or Controller
ADP3804JRU-12.5-RL ADI

获取价格

IC BATTERY CHARGE CONTROLLER, PDSO24, TSSOP-24, Switching Regulator or Controller
ADP3804JRU-125 ADI

获取价格

High Frequency Switch Mode Li-Ion Battery Charger