5秒后页面跳转
AD698APZ PDF预览

AD698APZ

更新时间: 2024-01-28 13:09:14
品牌 Logo 应用领域
亚德诺 - ADI /
页数 文件大小 规格书
12页 235K
描述
Universal LVDT Signal Conditioner

AD698APZ 技术参数

是否无铅: 含铅是否Rohs认证: 不符合
生命周期:Active零件包装代码:DIP
包装说明:DIP,针数:24
Reach Compliance Code:unknown风险等级:5.88
最大模拟输入电压:3.5 V转换器类型:SIGNAL CONDITIONER
JESD-30 代码:R-GDIP-T24JESD-609代码:e0
湿度敏感等级:NOT APPLICABLE最大负电源电压:-18 V
最小负电源电压:-6.5 V标称负供电电压:-15 V
功能数量:1端子数量:24
最高工作温度:125 °C最低工作温度:-55 °C
封装主体材料:CERAMIC, GLASS-SEALED封装代码:DIP
封装形状:RECTANGULAR封装形式:IN-LINE
峰值回流温度(摄氏度):NOT APPLICABLE认证状态:COMMERCIAL
座面最大高度:5.08 mm信号/输出频率:20000 Hz
最大供电电压:18 V最小供电电压:6.5 V
标称供电电压:15 V表面贴装:NO
温度等级:MILITARY端子面层:TIN LEAD
端子形式:THROUGH-HOLE端子节距:2.54 mm
端子位置:DUAL处于峰值回流温度下的最长时间:NOT APPLICABLE
宽度:15.24 mmBase Number Matches:1

AD698APZ 数据手册

 浏览型号AD698APZ的Datasheet PDF文件第4页浏览型号AD698APZ的Datasheet PDF文件第5页浏览型号AD698APZ的Datasheet PDF文件第6页浏览型号AD698APZ的Datasheet PDF文件第8页浏览型号AD698APZ的Datasheet PDF文件第9页浏览型号AD698APZ的Datasheet PDF文件第10页 
AD698  
Multiply the primary excitation voltage by the VT R to get  
the expected secondary voltage at mechanical full scale. For  
example, for an LVDT with a sensitivity of 2.4 mV/V/mil and  
a full scale of ±0.1 inch, the VT R = 0.0024 V/V/Mil × 100  
mil = 0.24. Assuming the maximum excitation of 3.5 V rms,  
the maximum secondary voltage will be 3.5 V rms × 0.24 =  
0.84 V rms, which is in the acceptable range.  
b. Full-scale core displacement from null, d  
S × d = VT R and also equals the ratio A/B at mechanical full  
scale. T he VT R should be converted to units of V/V.  
For a full-scale displacement of d inches, voltage out of the  
AD698 is computed as  
VOUT = S × d × 500 µA × R2  
Conversely the VT R may be measured explicitly. With the  
LVDT energized at its typical drive level VPRI, as indicated  
by the manufacturer, set the core displacement to its me-  
chanical full-scale position and measure the output VSEC of  
the secondary. Compute the LVDT voltage transformation  
ratio, VT R. VTR = VSEC//VPRI. For the E100, VSEC = 0.72 V  
for VPRI = 3 V. VT R = 0.24.  
VOUT is measured with respect to the signal reference,  
Pin 21, shown in Figure 7.  
Solving for R2,  
VOUT  
S × d × 500 µA  
R2 =  
(1)  
For VOUT = ±10 V full-scale range (20 V span) and d = ±0.1  
inch full-scale displacement (0.2 inch span)  
For situations where LVDT sensitivity is low, or the me-  
chanical FS is a small fraction of the total stroke length, an  
input excitation of more than 3.5 V rms may be needed. In  
this case a voltage divider network may be placed across the  
LVDT primary to provide smaller voltage for the +BIN and  
–BIN input. If, for example, a network was added to divide  
the B Channel input by 1/2, then the VT R should also be re-  
duced by 1/2 for the purpose of component selection.  
20V  
R2 =  
= 83. 3 kΩ  
2. 4 × 0.2 × 500 µA  
VOUT as a function of displacement for the above example is  
shown in Figure 10.  
VOUT (VOLTS)  
Check the power supply voltages by verifying that the peak  
values of VA and VB are at least 2.5 volts less than the volt-  
ages at +VS and –VS.  
+10  
+0.1d (INCHES)  
–0.1  
6. Referring to Figure 9, for VS = ±15 V, select the value of the  
amplitude determining component R1 as shown by the curve  
in Figure 9.  
–10  
Figure 10. VOUT (±10 V Full Scale) vs. Core Displace-  
m ent (±0.1 Inch)  
30  
25  
20  
E. O ptional O ffset of O utput Voltage Swing  
9. Selections of R3 and R4 permit a positive or negative output  
voltage offset adjustment.  
1
1
VOS = 1. 2 V × R2 ×  
(2)  
4
R3 + 2 kΩ  
R
+ 2 kΩ  
15  
V rms  
For no offset adjustment R3 and R4 should be open circuit.  
10  
5
T o design a circuit producing a 0 V to +10 V output for a  
displacement of +0.1 inch, set VOUT to +10 V, d = 0.2 inch  
and solve Equation (1) for R2.  
V
(VOLTS)  
OUT  
+5  
0
0.01  
0.1  
1
10  
100  
1k  
R1 – k  
+0.1d (INCHES)  
–0.1  
Figure 9. Excitation Voltage VEXC vs. R1  
–5  
7. C2, C3 and C4 are a function of the desired bandwidth of  
the AD698 position measurement subsystem. T hey should  
be nominally equal values.  
Figure 11. VOUT (±5 V Full Scale) vs. Core Displacem ent  
(±0.1 Inch)  
C2 = C3 = C4 = 10–4 Farad Hz/f5UBSYSTEM (Hz)  
If the desired system bandwidth is 250 Hz, then  
C2 = C3 = C4 = 10-4 Farad Hz/250 Hz = 0.4 µF  
T his will produce a response shown in Figure 11.  
In Equation (2) set VOS = 5 V and solve for R3 and R4. Since a  
positive offset is desired, let R4 be open circuit. Rearranging  
Equation (2) and solving for R3  
See Figures 14, 15 and 16 for more information about  
AD698 bandwidth and phase characterization.  
1. 2 × R2  
VOS  
R3 =  
– 2 kΩ = 7.02 kΩ  
D . Set the Full-Scale O utput Voltage  
8. T o compute R2, which sets the AD698 gain or full-scale  
output range, several pieces of information are needed:  
a. LVDT sensitivity, S  
REV. B  
–7–  

AD698APZ 替代型号

型号 品牌 替代类型 描述 数据表
AD698AP ADI

类似代替

Universal LVDT Signal Conditioner

与AD698APZ相关器件

型号 品牌 获取价格 描述 数据表
AD698SQ ADI

获取价格

Universal LVDT Signal Conditioner
AD6A1950/2140F60DCA VANLONG

获取价格

Array Duplexer (AD Type)
AD6C101 SSOUSA

获取价格

1 Form A Solid State Relay
AD6C111 SSOUSA

获取价格

1 Form A Solid State Relay
AD6C111-E SSOUSA

获取价格

1 Form A Solid State Relay
AD6C111-L SSOUSA

获取价格

1 Form A Solid State Relay
AD6C112 SSOUSA

获取价格

1 Form B Solid State Relay
AD6C211 SSOUSA

获取价格

1 Form A Solid State Relay
AD6C211-L SSOUSA

获取价格

1 Form A Solid State Relay
AD6C212 SSOUSA

获取价格

1 Form B Solid State Relay