S
M
D
S
w
i
t
c
h
i
n
g
D
i
o
d
e
S
M
D
D
i
o
d
e
s
S
p
e
c
i
a
l
i
s
t
C
D
S
W
1
9
-
G
/
2
0
-
G
/
2
1
-
G
H
R
i
g
h
S
p
e
e
d
o
H
S
D
r
e
e
v
i
c
e
F
e
a
t
u
s
S
O
D
-
1
2
3
-
F
a
s
t
S
w
i
t
c
h
i
n
g
S
p
a
e
e
d
-
S
A
u
r
f
a
c
e
a
M
o
u
n
t
P
c
k
a
g
e
I
i
d
e
a
l
l
y
S
u
p
i
t
e
d
f
o
r
0
0
.
.
1
0
1
9
0
8
(
(
2
2
.
.
8
5
0
0
)
)
u
t
o
m
t
i
c
I
n
s
e
u
r
r
t
i
o
n
-
F
o
r
G
e
n
e
r
a
l
P
p
o
s
e
S
w
t
c
h
i
n
g
A
p
l
i
c
a
t
i
o
n
s
0
0
.
.
0
0
2
1
8
9
(
(
0
0
.
.
7
5
0
0
)
)
0
0
.
.
0
0
7
5
1
5
(
(
1
1
.
.
8
4
0
0
)
)
M
C
e
a
c
h
:
a
S
n
i
c
a
l
d
a
t
a
0
0
.
.
1
1
5
4
4
1
(
(
3
3
.
.
9
6
0
0
)
)
s
e
O
D
-
1
2
3
,
M
o
l
d
e
d
P
l
a
s
t
i
c
0
0
.
.
0
0
8
(
(
0
0
.
.
2
4
0
0
)
)
m
a
x
0
0
.
.
0
0
5
3
3
7
(
(
1
0
.
.
3
9
5
5
)
)
T
e
r
m
i
n
a
l
s
:
S
o
l
d
e
r
a
b
l
e
p
e
r
M
I
L
-
S
T
D
-
2
0
2
,
M
e
t
h
o
d
2
0
8
0
.
0
0
5
(
0
.
1
2
)
m
a
x
0
1
6
m
i
n
W
e
i
g
h
t
:
0
.
0
1
g
r
a
m
(
a
p
p
r
o
x
.
)
.
D
i
m
e
n
s
i
o
n
s
i
n
i
n
c
h
e
s
a
n
d
(
m
i
l
l
i
m
e
t
e
r
s
)
O
C
M
a
x
i
m
u
m
R
a
t
i
n
g
(
a
t
T
A
=
2
5
u
n
l
e
s
s
o
t
h
e
r
w
i
s
e
n
o
t
e
d
)
S
y
m
b
o
l
P
a
r
a
m
e
t
e
r
C
D
S
W
1
9
-
G
C
D
S
W
2
0
-
G
C
D
S
W
2
1
-
G
U
n
i
t
N
P
o
n
-
R
e
p
e
e
t
t
i
t
i
i
v
e
p
e
a
k
k
r
e
v
e
e
r
s
e
v
o
o
l
l
t
t
a
g
g
e
e
V
R
M
1
2
0
2
0
0
2
5 0
0 0
4 1
V
e
a
k
r
e
p
i
t
v
k
v
e
r
p
e
a
r
e
v
r
s
a
e
v
a
V
R
R
R
W
R
M
M
W
o
r
k
i
n
g
p
e
a
e
v
e
r
s
e
v
o
l
t
g
e
V
1
0
0
1
5
0
2
1
V
D
R
C
b
S
l
o
c
k
i
n
g
o
l
t
a
g
e
V
V R ( R M S )
V
M
r
e
v
d
e
e
r
s
e
v
o
l
t
a
g
e
7
1
1
4
0
0
6
0
m
A
A
F
o
r
w
a
r
c
o
n
t
i
n
u
o
u
s
c
u
r
r
e
n
t
I
F
M
A
P
v
e
e
r
a
g
r
e
c
t
i
f
i
e
d
o
u
t
p
u
t
c
u
r
r
e
n
t
I
o
2
0
0
m
2
0
.
.
5
5
a
k
f
o
r
w
a
r
d
e
s
u
r
g
e
c
u
r
r
e
n
t
@
@
1
1
.
.
0
0
m
S
S
I
F
S
M
A
I
F
R
M
6
2
5
R
P
e
o
p
e
t
i
t
i
v
e
p
a
k
f
o
r
w
a
r
d
c
u
r
r
e
n
t
m
A
w e r d i s s i p a t i o n
P
D
2
5
5
0
0
0
m
W
O
C
/
W
R
T
J
A
T
h
e
r
m
a
l
R
e
s
i
s
t
a
n
c
e
(
J
u
n
c
t
i
o
n
t
o
a
m
b
i
e
n
t
)
O
S
T
G
-
6
5
~
+
1
5
0
S
t
o
r
a
g
e
t
e
m
p
e
r
a
t
u
r
e
C
O
C
E
l
e
c
t
r
i
c
a
l
C
h
a
r
a
c
t
e
r
i
s
t
i
c
s
(
a
t
T
A
=
2
5
u
n
l
e
s
s
o
t
h
e
r
w
i
s
e
n
o
t
e
d
)
S
y
m
b
o
l
T
y
p
P
a
r
a
m
e
t
e
r
C
o
n
d
i
t
i
o
n
s
M
i
n
M
a
x
U
n
i
t
I
F
F
=
=
0
.
1
A
1
.
0
F
o
r
w
a
r
d
v
c
o
l
t
a
g
e
V
F
V
I
0
.
2
A
1
.
2
5
C
C
C
D
S
W
1
2
2
9
0
1
-
G
V
V
V
R
R
R
=
=
=
1
1
2
0
5
0
0
0
0
V
V
V
0
0
0
.
.
.
1
R
e
v
e
r
s
e
u
r
r
e
n
t
t
D
D
S
S
W
W
-
G
G
I
R
1
u
A
-
1
C
R
a
e
p
v
a
e
c
i
t
a
n
c
e
b
e
w
e
e
n
t
e
r
m
i
n
a
l
s
f
I
=
1
M
H
Z
,
V
R
=
0
V
C
T
5
P
F
S
r
s
e
r
e
c
o
v
e
r
y
t
i
m
e
F
=
I
R
=
3
0
m
A
,
R
L
=
1
0
0
Ω
,
I
r
r
=
0
.
1
X
I
R
t
R
R
5
0
n
R
E
V
:
A
1
P
a
g
e
Q
W
-
B
0
0
1
8