5秒后页面跳转
ADN2850BRU25-RL7 PDF预览

ADN2850BRU25-RL7

更新时间: 2024-01-12 07:39:58
品牌 Logo 应用领域
亚德诺 - ADI 电阻器
页数 文件大小 规格书
20页 474K
描述
Nonvolatile Memory, Dual 1024 Position Programmable Resistors

ADN2850BRU25-RL7 数据手册

 浏览型号ADN2850BRU25-RL7的Datasheet PDF文件第6页浏览型号ADN2850BRU25-RL7的Datasheet PDF文件第7页浏览型号ADN2850BRU25-RL7的Datasheet PDF文件第8页浏览型号ADN2850BRU25-RL7的Datasheet PDF文件第10页浏览型号ADN2850BRU25-RL7的Datasheet PDF文件第11页浏览型号ADN2850BRU25-RL7的Datasheet PDF文件第12页 
ADN2850  
conditions. Table IV illustrates the operation of the shifting  
function on the individual RDAC register data bits. Each line  
going down the table represents a successive shift operation. Note  
that the left shift 12 and 13 commands were modified such that  
if the data in the RDAC register is equal to zero, and the data is  
left shifted, the RDAC register is then set to code 1. Similarly, if the  
data in the RDAC register is greater than or equal to midscale,  
and the data is left shifted, then the data in the RDAC register is  
automatically set to full scale. This makes the left shift function  
as ideal a logarithmic adjustment as possible.  
Using Additional Internal Nonvolatile EEMEM  
The ADN2850 contains additional internal user storage registers  
(EEMEM) for saving constants and other 16-bit data. Table V  
provides an address map of the internal storage registers shown  
in the functional block diagram as EEMEM1, EEMEM2, and  
and 26 bytes (13 addresses 2 bytes each) of USER EEMEM.  
Table V. EEMEM Address Map  
EEMEM  
Number  
Address  
EEMEM Content For  
The right shift 4 and 5 commands will be ideal only if the LSB is  
zero (i.e., ideal logarithmic—no error). If the LSB is a one, then  
the right shift function generates a linear half LSB error, which  
translates to a number of bits-dependent logarithmic error as  
shown in Figure 3. The plot shows the error of the odd numbers  
of bits for ADN2850.  
1
2
3
4
0000  
0001  
0010  
0011  
:
RDAC11, 2  
RDAC2  
USER13  
USER2  
:
:
15  
16  
1110  
1111  
USER13  
% Tolerance4  
Table IV. Detail Left and Right Shift Functions for 6 dB  
Step Increment and Decrement  
NOTES  
1RDAC data stored in EEMEM locations are transferred to their corresponding  
RDAC REGISTER at power-on, or when instructions 1, 8, and PR are executed.  
2Execution of instruction 1 leaves the device in the read mode power consumption  
state. After the last instruction 1 is executed, the user should perform a NOP,  
instruction 0 to return the device to the low power idling state.  
3USER <data> are internal nonvolatile EEMEM registers available to store and  
retrieve constants and other 16-bit information using instructions 3 and 9 respectively.  
4Read only.  
Left Shift  
Right Shift  
00 0000 0000 11 1111 1111  
00 0000 0001 01 1111 1111  
00 0000 0010 00 1111 1111  
00 0000 0100 00 0111 1111  
00 0000 1000 00 0011 1111  
00 0001 0000 00 0001 1111  
00 0010 0000 00 0000 1111  
00 0100 0000 00 0000 0111  
00 1000 0000 00 0000 0011  
01 0000 0000 00 0000 0001  
10 0000 0000 00 0000 0000  
11 1111 1111 00 0000 0000  
11 1111 1111 00 0000 0000  
Calculating Actual Full-Scale Resistance  
Right Shift  
–6 dB/step  
Left Shift  
6 dB/step  
The actual tolerance of the rated full-scale resistance RWB1 is  
stored in EEMEM register 15 during factory testing. The actual  
full-scale resistance can therefore be calculated, which will be  
valuable for tolerance matching or calibration. Notice this value  
is read only, and the full-scale resistance of RWB2_FS matches  
RWB1_FS, of typically 0.1%.  
The tolerance in % is stored in the last 16 bits of data in EEMEM  
register 15. The format is sign magnitude binary format with the  
MSB designates for sign (0 = positive and 1 = negative), the next  
7 MSB designate for the integer number, and the 8 LSB designate  
for the decimal number. See Table VI.  
Actual conformance to a logarithmic curve between the data con-  
tents in the RDAC register and the wiper position for each right  
shift 4 and 5 command execution contains an error only for odd  
numbers of bits. Even numbers of bits are ideal. The graph in  
Figure 3 shows plots of Log_Error [i.e., 20 log10 (error/code)]  
ADN2850. For example, code 3 Log_Error = 20 log10 (0.5/3)  
= –15.56 dB, which is the worst case. The plot of Log_Error is  
more significant at the lower codes.  
Table VI. Tolerance in % from Rated Full-Scale Resistance  
D14 D13 D12 D11 D10 D9 D8  
D7 D6 D5 D4 D3 D2 D1 D0  
Bit D15  
sign  
magsign  
6
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Sign  
7 Bits for Integer Number Decimal 8 Bits for Decimal Number  
Point  
0
–20  
–40  
–60  
–80  
For example, if RWB_FS_RATED = 250 kand the data is 0001  
1100 0000 1111, RWB_FS_ACTUAL can be calculated as follows:  
MSB:  
0 = Positive  
Next 7 MSB:  
8 LSB:  
001 1100 = 28  
0000 1111 = 15 2–8 = 0.06  
% Tolerance = +28.06%  
Thus, RWB_FS_ACTUAL = 320.15 kΩ  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1  
3
CODE – From 1 to 1023 by 2.0 10  
Figure 3. Plot of Log_Error Conformance for Odd  
Numbers of Bits Only (Even Numbers of Bits Are Ideal)  
REV. B  
–9–  

与ADN2850BRU25-RL7相关器件

型号 品牌 描述 获取价格 数据表
ADN2850BRUZ25 ADI Nonvolatile Memory, Dual 1024-Position Digital Resistor

获取价格

ADN2850BRUZ25-RL7 ADI Nonvolatile Memory, Dual 1024-Position Digital Resistor

获取价格

ADN2855 ADI Multirate 155 Mbps/622 Mbps/1244 Mbps/1250 Mbps Burst Mode Clock and Data Recovery IC with

获取价格

ADN2855ACPZ ADI Multirate 155 Mbps/622 Mbps/1244 Mbps/1250 Mbps Burst Mode Clock and Data Recovery IC with

获取价格

ADN2855ACPZ-R7 ADI Multirate 155 Mbps/622 Mbps/1244 Mbps/1250 Mbps Burst Mode Clock and Data Recovery IC with

获取价格

ADN2855-EVALZ ADI Multirate 155 Mbps/622 Mbps/1244 Mbps/1250 Mbps Burst Mode Clock and Data Recovery IC with

获取价格