5秒后页面跳转
BC239RLRE PDF预览

BC239RLRE

更新时间: 2024-01-02 10:09:30
品牌 Logo 应用领域
安森美 - ONSEMI 放大器晶体管
页数 文件大小 规格书
34页 321K
描述
TRANSISTOR 100 mA, 25 V, NPN, Si, SMALL SIGNAL TRANSISTOR, TO-92, PLASTIC, TO-226AA, 3 PIN, BIP General Purpose Small Signal

BC239RLRE 技术参数

生命周期:Transferred包装说明:CYLINDRICAL, O-PBCY-T3
Reach Compliance Code:unknownECCN代码:EAR99
HTS代码:8541.21.00.75风险等级:5.61
其他特性:LOW NOISE最大集电极电流 (IC):0.1 A
基于收集器的最大容量:4.5 pF集电极-发射极最大电压:25 V
配置:SINGLE最小直流电流增益 (hFE):120
JEDEC-95代码:TO-92JESD-30 代码:O-PBCY-T3
元件数量:1端子数量:3
最高工作温度:150 °C封装主体材料:PLASTIC/EPOXY
封装形状:ROUND封装形式:CYLINDRICAL
极性/信道类型:NPN功耗环境最大值:1 W
认证状态:Not Qualified表面贴装:NO
端子形式:THROUGH-HOLE端子位置:BOTTOM
晶体管应用:AMPLIFIER晶体管元件材料:SILICON
标称过渡频率 (fT):280 MHzVCEsat-Max:0.6 V
Base Number Matches:1

BC239RLRE 数据手册

 浏览型号BC239RLRE的Datasheet PDF文件第28页浏览型号BC239RLRE的Datasheet PDF文件第29页浏览型号BC239RLRE的Datasheet PDF文件第30页浏览型号BC239RLRE的Datasheet PDF文件第32页浏览型号BC239RLRE的Datasheet PDF文件第33页浏览型号BC239RLRE的Datasheet PDF文件第34页 
154  
153  
UCL = 152.8  
= 150.4  
152  
151  
X
150  
149  
148  
147  
LCL = 148.0  
UCL = 7.3  
7
6
5
4
= 3.2  
R
3
2
1
0
LCL = 0  
Figure 4. Example of Process Control Chart Showing Oven Temperature Data  
Where D4, D3, and A2 are constants varying by sample size,  
with values for sample sizes from 2 to 10 shown in the  
following partial table:  
σ tot =  
σ tot =  
2
2
2
2
2
σ A + σ B + σ C + σ D + σ E  
2
2
2
2
2
5 + 3 + 2 + 1 +(0.4) = 6.3  
n
2
3
4
5
2.11  
*
6
7
8
9
10  
2.00 1.92 1.86 1.82 1.78  
0.08 0.14 0.18 0.22  
If only D is identified and eliminated, then:  
σ tot =  
D
3.27 2.57 2.28  
4
3
2
2
2
2
2
5 + 3 + 2 + (0.4) = 6.2  
D
A
*
*
*
*
This results in less than 2% total variability improvement. If  
B, C, and D were eliminated, then:  
1.88 1.02 0.73 0.58 0.48 0.42 0.37 0.34 0.31  
*For sample sizes below 7, the LCL would technically be a negative number;  
R
inthosecasesthereisnolowercontrollimit;thismeansthatforasubgroupsize  
6, six ‘‘identical’’ measurements would not be unreasonable.  
σ tot =  
2
2
5 + (0.4) = 5.02  
This gives a considerably better improvement of 23%. If  
only A is identified and reduced from 5 to 2, then:  
Control charts are used to monitor the variability of critical  
process parameters. The R chart shows basic problems with  
piece to piece variability related to the process. The X chart can  
often identify changes in people, machines, methods, etc. The  
source of the variability can be difficult to find and may require  
experimental design techniques to identify assignable causes.  
Some general rules have been established to help determine  
when a process is OUT–OF–CONTROL. Figure 5 shows a  
control chart subdivided into zones A, B, and C corresponding  
to 3 sigma, 2 sigma, and 1 sigma limits respectively. In Figures  
6 through 9 four of the tests that can be used to identify  
excessive variability and the presence of assignable causes  
are shown. As familiarity with a given process increases, more  
subtle tests may be employed successfully.  
Once the variability is identified, the cause of the variability  
must be determined. Normally, only a few factors have a  
significant impact on the total variability of the process. The  
importance of correctly identifying these factors is stressed in  
the following example. Suppose a process variability depends  
on the variance of five factors A, B, C, D, and E. Each has a  
variance of 5, 3, 2, 1, and 0.4, respectively.  
σ tot =  
2
2
2
2
2
2 + 3 + 2 + 1 + (0.4) = 4.3  
Identifying and improving the variability from 5 to 2 yields a  
total variability improvement of nearly 40%.  
Most techniques may be employed to identify the primary  
assignable cause(s). Out–of–control conditions may be  
correlated to documented process changes. The product may  
be analyzed in detail using best versus worst part comparisons  
or Product Analysis Lab equipment. Multi–variance analysis  
can be used to determine the family of variation (positional,  
critical, or temporal). Lastly, experiments may be run to test  
theoretical or factorial analysis. Whatever method is used,  
assignable causes must be identified and eliminated in the  
most expeditious manner possible.  
After assignable causes have been eliminated, new control  
limits are calculated to provide a more challenging variablility  
criteria for the process. As yields and variability improve, it may  
become more difficult to detect improvements because they  
become much smaller. When all assignable causes have been  
eliminated and the points remain within control limits for 25  
groups, the process is said to in a state of control.  
Since:  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
Reliability and Quality Assurance  
9–19  

与BC239RLRE相关器件

型号 品牌 获取价格 描述 数据表
BC239RLRF MOTOROLA

获取价格

100mA, 25V, NPN, Si, SMALL SIGNAL TRANSISTOR, TO-92
BC239RLRM MOTOROLA

获取价格

100mA, 25V, NPN, Si, SMALL SIGNAL TRANSISTOR, TO-92
BC239RLRM ONSEMI

获取价格

100mA, 25V, NPN, Si, SMALL SIGNAL TRANSISTOR, TO-92, PLASTIC, TO-226AA, 3 PIN
BC239RLRP MOTOROLA

获取价格

100mA, 25V, NPN, Si, SMALL SIGNAL TRANSISTOR, TO-92
BC239-TA CJ

获取价格

TO-92 Plastic-Encapsulate Transistors
BC239ZL1 MOTOROLA

获取价格

Small Signal Bipolar Transistor, 0.1A I(C), 25V V(BR)CEO, 1-Element, NPN, Silicon, TO-92
BC239ZL1 ONSEMI

获取价格

100mA, 25V, NPN, Si, SMALL SIGNAL TRANSISTOR, TO-92, PLASTIC, TO-226AA, 3 PIN
BC23S03 AMPHENOL

获取价格

PCB Connector
BC-23S-03 AMPHENOL

获取价格

PCB CONNECTOR, ROHS COMPLIANT
BC-23S-03-1 AMPHENOL

获取价格

PCB Connector, ROHS COMPLIANT