5秒后页面跳转
AU5790D14-T PDF预览

AU5790D14-T

更新时间: 2024-02-09 09:50:59
品牌 Logo 应用领域
飞利浦 - PHILIPS 电信光电二极管电信集成电路
页数 文件大小 规格书
25页 127K
描述
CAN Transceiver, 1-Trnsvr, PDSO14,

AU5790D14-T 技术参数

是否Rohs认证: 符合生命周期:Transferred
包装说明:SOP, SOP14,.25Reach Compliance Code:unknown
风险等级:5.81Is Samacsys:N
数据速率:100 MbpsJESD-30 代码:R-PDSO-G14
JESD-609代码:e4端子数量:14
收发器数量:1最高工作温度:125 °C
最低工作温度:-40 °C封装主体材料:PLASTIC/EPOXY
封装代码:SOP封装等效代码:SOP14,.25
封装形状:RECTANGULAR封装形式:SMALL OUTLINE
电源:12 V认证状态:Not Qualified
子类别:Network Interfaces最大压摆率:85 mA
标称供电电压:12 V表面贴装:YES
电信集成电路类型:CAN TRANSCEIVER温度等级:AUTOMOTIVE
端子面层:Nickel/Palladium/Gold (Ni/Pd/Au)端子形式:GULL WING
端子节距:1.27 mm端子位置:DUAL
Base Number Matches:1

AU5790D14-T 数据手册

 浏览型号AU5790D14-T的Datasheet PDF文件第17页浏览型号AU5790D14-T的Datasheet PDF文件第18页浏览型号AU5790D14-T的Datasheet PDF文件第19页浏览型号AU5790D14-T的Datasheet PDF文件第21页浏览型号AU5790D14-T的Datasheet PDF文件第22页浏览型号AU5790D14-T的Datasheet PDF文件第23页 
Philips Semiconductors  
Application note  
AU5790 Single wire CAN transceiver  
AN2005  
Table 3. Power Dissipation At 13.4 V Battery Voltage Vs. Node Count  
I
P
V
I
I
I
P
P
tot  
BATPN  
(mA)  
PNINT  
CANHN  
(V)  
LOADN  
(mA)  
BATN  
INT  
INT  
Nodes  
R
()  
V
(V)  
Dcycle  
L
BAT  
(mW)  
26.8  
26.8  
26.8  
26.8  
(mA)  
(mA)  
(mW)  
263.5  
298.9  
343.1  
396.2  
(mW)  
145.1  
162.8  
184.9  
211.5  
2
4550  
13.4  
13.4  
13.4  
13.4  
2
2
2
2
4.55  
4.55  
4.55  
4.55  
1
5
20  
19  
0.5  
0.5  
0.5  
0.5  
10  
20  
32  
910  
455  
24  
19  
10  
16  
29  
19  
284.4  
35  
19  
Table 4. Power Dissipation At 18 V Battery Voltage Vs. Node Count  
R
I
P
(mW)  
V
I
I
I
P
P
tot  
L
BATPN  
(mA)  
PNINT  
CANHN  
(V)  
LOADN  
(mA)  
BATN  
INT  
INT  
Nodes  
V
(V)  
Dcycle  
BAT  
()  
4550  
910  
(mA)  
(mA)  
(mW)  
355.5  
409.3  
476.5  
557.2  
(mW)  
195.7  
222.6  
256.3  
296.6  
2
18  
18  
18  
18  
2
2
2
2
36  
4.55  
4.55  
4.55  
4.55  
1
5
20  
19  
0.5  
0.5  
0.5  
0.5  
10  
20  
32  
36  
24  
19  
455  
36  
10  
16  
29  
19  
284.4  
36  
35  
19  
Table 5. Power Dissipation At 26.5 V Battery Voltage Vs. Node Count  
R
I
P
(mW)  
V
I
I
I
P
P
tot  
L
BATPN  
(mA)  
PNINT  
CANHN  
(V)  
LOADN  
(mA)  
BATN  
INT  
INT  
Nodes  
V
(V)  
Dcycle  
BAT  
()  
4550  
910  
455  
284  
(mA)  
(mA)  
(mW)  
525.5  
613.3  
723  
(mW)  
289.2  
333.1  
388  
2
26.5  
26.5  
26.5  
26.5  
2
2
2
2
53  
4.55  
4.55  
4.55  
4.55  
1
5
20  
19  
0.5  
0.5  
0.5  
0.5  
10  
20  
32  
53  
24  
19  
53  
10  
16  
29  
19  
53  
35  
19  
854.7  
453.8  
4.3.3 Selecting a Package and Board  
In a user’s application, the following are usually known or can be calculated from circuit parameters;  
Tj(max) = 150 _C from the data sheet.  
This is the maximum allowed junction temperature.  
Ta(max) is known from the user’s application.  
Typically the maximum ambient temperature, Ta, it will be 85 _C for most body multiplexing nodes, however some nodes such as those  
in the instrument cluster may require operation at 105 _C and any nodes in the engine compartment will most likely require operation in  
a 125 _C ambient.  
Pd(max) is the power dissipation for the worst case combination of load and supply voltage.  
It can be calculated as described in the previous section for any application. Several summaries of calculated Pd are shown in Tables 3,  
4, and 5 at the end of the previous section.  
This leaves only the thermal resistance, θja, as an unknown. The thermal equation can be solved for θja.  
Tj = Ta + Pd*θja Becomes; θja = (Tj–Ta)/Pd  
With θja calculated, Figures 14 and 15 may be used to determine a package and PC board configuration that will provide a thermal resistance,  
θja, less than the required value.  
For example assume; θja(max) = 125 _C/W  
Examining Figure 14 for the SO-8 package we find that a high conductance board with just the normal signal traces will provide approximately  
100 _C/W and hence exceeds the requirements with margin to spare. The low conductance board will also work if 225-sq. mm of foil area is  
included on pin 8, the fused pin, to act as a heat sink providing approximately 120 _C/W. It can also be seen that the very low thermal  
conductance board will not support this application using an SO-8 package. If we now examine the SO-14 curves in Figure 15 we find even the  
very low conductance board will meet the needs of the application with minimal additional copper foil for heat dissipation, and the low and high  
conductance boards do not require any extra foil area.  
For selected operating voltages Figures 17 through 22 shows plots that allow the user to select a board type if the number of standard nodes,  
operating voltage, and ambient temperature are known. These plots were created using the data and equations from the previous two sections.  
Select the plot for the operating voltage and package type being considered, and then find the intersection of the maximum node count and the  
highest ambient temperature required. Any curve which is above the intersection point represents a board type and possible area of heat  
dissipating copper foil which will provide a low enough thermal resistance to meet the applications needs. These plots assume all nodes use the  
normal unit load resistance of 9.1 k, and insure that the junction temperature, Tj, will not exceed 150 _C.  
19  
2001 Apr 16  

与AU5790D14-T相关器件

型号 品牌 描述 获取价格 数据表
AU5790D8 NXP IC DATACOM, INTERFACE CIRCUIT, PDSO8, 3.90 MM, PLASTIC, MS-012, SOT-96-1, SOP-8, Network I

获取价格

AU5790D8 PHILIPS CAN Transceiver, 1-Trnsvr, PDSO8,

获取价格

AU5790D8-T NXP IC DATACOM, INTERFACE CIRCUIT, PDSO8, PLASTIC, SOT-96, SO-8, Network Interface

获取价格

AU5790D-T PHILIPS CAN Transceiver, 1-Trnsvr, BICMOS, PDSO8,

获取价格

AU6254 ETC USB2.0 Hub Controller

获取价格

AU6320 ETC USB2.0 CF Card Reader Controller

获取价格