5秒后页面跳转
AD8229 PDF预览

AD8229

更新时间: 2024-01-25 14:55:31
品牌 Logo 应用领域
亚德诺 - ADI 仪表放大器
页数 文件大小 规格书
24页 825K
描述
1nV/√Hz Low Noise 210°C Instrumentation Amplifier

AD8229 技术参数

是否无铅: 含铅是否Rohs认证: 符合
生命周期:Active零件包装代码:DIP
包装说明:ROHS COMPLIANT, SIDE BRAZED, CERAMIC, DIP-8针数:8
Reach Compliance Code:compliantECCN代码:EAR99
HTS代码:8542.31.00.01风险等级:2.33
Samacsys Confidence:Samacsys Status:Released
Schematic Symbol:https://componentsearchengine.com/symbol.php?partID=420417PCB Footprint:https://componentsearchengine.com/footprint.php?partID=420417
Samacsys PartID:420417Samacsys Image:https://componentsearchengine.com/Images/9/AD8229HDZ.jpg
Samacsys Thumbnail Image:https://componentsearchengine.com/Thumbnails/1/AD8229HDZ.jpgSamacsys Pin Count:8
Samacsys Part Category:Integrated CircuitSamacsys Package Category:Other
Samacsys Footprint Name:DIP254P762X355-8PSamacsys Released Date:2017-01-10 13:33:33
Is Samacsys:N放大器类型:INSTRUMENTATION AMPLIFIER
最大平均偏置电流 (IIB):0.07 µA标称带宽 (3dB):15 MHz
最小共模抑制比:86 dB最大输入失调电流 (IIO):0.035 µA
最大输入失调电压:100 µVJESD-30 代码:R-CDIP-T8
JESD-609代码:e4长度:13.208 mm
负供电电压上限:-17 V标称负供电电压 (Vsup):-15 V
功能数量:1端子数量:8
最高工作温度:210 °C最低工作温度:-40 °C
封装主体材料:CERAMIC, METAL-SEALED COFIRED封装代码:DIP
封装等效代码:DIP8,.3封装形状:RECTANGULAR
封装形式:IN-LINE峰值回流温度(摄氏度):NOT SPECIFIED
电源:+-15 V认证状态:Not Qualified
座面最大高度:4.09 mm标称压摆率:22 V/us
子类别:Instrumentation Amplifier最大压摆率:7 mA
供电电压上限:17 V标称供电电压 (Vsup):15 V
表面贴装:NO温度等级:AUTOMOTIVE
端子面层:GOLD端子形式:THROUGH-HOLE
端子节距:2.54 mm端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED最大电压增益:1000
最小电压增益:1标称电压增益:10
宽度:7.62 mmBase Number Matches:1

AD8229 数据手册

 浏览型号AD8229的Datasheet PDF文件第17页浏览型号AD8229的Datasheet PDF文件第18页浏览型号AD8229的Datasheet PDF文件第19页浏览型号AD8229的Datasheet PDF文件第21页浏览型号AD8229的Datasheet PDF文件第22页浏览型号AD8229的Datasheet PDF文件第23页 
AD8229  
1
Source Resistance Noise  
FilterFrequencyCM  
=
RCC  
Any sensor connected to the AD8229 has some output resistance.  
There may also be resistance placed in series with inputs for  
protection from either overvoltage or radio frequency inter-  
ference. This combined resistance is labeled R1 and R2 in Figure  
63. Any resistor, no matter how well made, has a minimum level  
of noise. This noise is proportional to the square root of the  
resistor value. At room temperature, the value is approximately  
equal to 4 nV/√Hz × √(resistor value in kΩ).  
where CD 10 CC.  
+V  
S
0.1µF  
+IN  
10µF  
C
1nF  
C
R
4.02kΩ  
V
C
D
10nF  
OUT  
For example, assuming that the combined sensor and protection  
resistance on the positive input is 4 kΩ and on the negative  
input is 1 kΩ, the total noise from the resistance is  
R
G
AD8229  
R
REF  
–IN  
4.02kΩ  
C
C
1nF  
(4× 4)2 + (4× 1)2  
=
= 8.9 nV/  
Hz  
64 +16  
0.1µF  
10µF  
Voltage Noise of the Instrumentation Amplifier  
–V  
S
Figure 62. RFI Suppression  
The voltage noise of the instrumentation amplifier is calculated  
using three parameters: the part input noise, output noise, and  
the Rg resistor noise. It is calculated as follows:  
CD affects the difference signal, and CC affects the common-mode  
signal. Values of R and CC should be chosen to minimize RFI. A  
mismatch between R × CC at the positive input and R × CC at the  
negative input degrades the CMRR of the AD8229. By using a  
value of CD one magnitude larger than CC, the effect of the mis-  
match is reduced, and performance is improved.  
Total Voltage Noise =  
(Output Noise /G)2 + (Input Noise)2 + (Noise of Rg Resistor)2  
For example, for a gain of 100, the gain resistor is 60.4 Ω. There-  
fore, the voltage noise of the in-amp is  
Resistors add noise; therefore, the resistor and capacitor values  
chosen depend on the desired tradeoff between noise, input  
impedance at high frequencies, and RFI immunity. The resistors  
used for the RFI filter can be the same as those used for input  
protection.  
(43/100)2 + 12 + (4× 0.0604)2  
= 1.5 nV/  
Hz  
Current Noise of the Instrumentation Amplifier  
CALCULATING THE NOISE OF THE INPUT STAGE  
Current noise is calculated by multiplying the source resistance  
by the current noise.  
SENSOR  
For example, if the R1 source resistance in Figure 63 is 4 kΩ,  
and the R2 source resistance is 1 k Ω, the total effect from the  
current noise is calculated as follows:  
R
R1  
R2  
G
AD8229  
((4 ×1.5)2 + (1×1.5)2 )  
= 6.2 nV/  
Hz  
Total Noise calculation  
Figure 63. AD8229 with Source Resistance from Sensor and  
Protection Resistors  
To determine the total noise of the in-amp, referred to input,  
combine the source resistance noise, voltage noise, and current  
noise contribution by the sum of squares method.  
The total noise of the amplifier front end depends on much  
more than the 1 nV/√Hz headline specification of this data  
sheet. The total noise is dependent on three main factors: the  
source resistance, the voltage noise of the instrumentation  
amplifier, and the current noise of the instrumentation  
amplifier.  
For example, if the R1 source resistance in Figure 63 is 4 kΩ, the  
R2 source resistance is 1 k Ω, and the gain of the in-amps is 100,  
the total noise, referred to input, is  
8.92 +1.52 + 6.22 )  
= 11.0 nV/  
Hz  
In the following calculations, noise is referred to the input  
(RTI). In other words, everything is calculated as if it appeared  
at the amplifier input. To calculate the noise referred to the  
amplifier output (RTO), simply multiple the RTI noise by the  
gain of the instrumentation amplifier.  
Rev. 0 | Page 20 of 24  
 
 
 

与AD8229相关器件

型号 品牌 描述 获取价格 数据表
AD8229_16 ADI 1 nV/√Hz Low Noise 210°C Instrumentation A

获取价格

AD8229HDZ ADI 1nV/√Hz Low Noise 210°C Instrumentation Ampli

获取价格

AD8229HRZ ADI 1 nV/√Hz Low Noise 210°C Instrumentation A

获取价格

AD8229HRZ-R7 ADI 1 nV/√Hz Low Noise 210°C Instrumentation A

获取价格

AD822A ADI Operational Amplifiers Selection Guide

获取价格

AD822A/CHIPS ETC Voltage-Feedback Operational Amplifier

获取价格