5秒后页面跳转
AD743JRZ-16 PDF预览

AD743JRZ-16

更新时间: 2024-01-22 01:36:06
品牌 Logo 应用领域
罗彻斯特 - ROCHESTER 放大器PC光电二极管
页数 文件大小 规格书
13页 969K
描述
OP-AMP, 1500 uV OFFSET-MAX, 4.5 MHz BAND WIDTH, PDSO16, SOIC-16

AD743JRZ-16 技术参数

是否无铅: 含铅是否Rohs认证: 符合
生命周期:Obsolete零件包装代码:SOIC
包装说明:SOP, SOP16,.3针数:16
Reach Compliance Code:unknownECCN代码:EAR99
HTS代码:8542.33.00.01风险等级:5.17
放大器类型:OPERATIONAL AMPLIFIER架构:VOLTAGE-FEEDBACK
最大平均偏置电流 (IIB):0.0006 µA25C 时的最大偏置电流 (IIB):0.0004 µA
最小共模抑制比:78 dB标称共模抑制比:95 dB
频率补偿:YES最大输入失调电流 (IIO):0.0064 µA
最大输入失调电压:1500 µVJESD-30 代码:R-PDSO-G16
JESD-609代码:e3长度:10.3 mm
低-偏置:YES低-失调:NO
湿度敏感等级:1负供电电压上限:-18 V
标称负供电电压 (Vsup):-15 V功能数量:1
端子数量:16最高工作温度:70 °C
最低工作温度:封装主体材料:PLASTIC/EPOXY
封装代码:SOP封装等效代码:SOP16,.3
封装形状:RECTANGULAR封装形式:SMALL OUTLINE
包装方法:TAPE AND REEL峰值回流温度(摄氏度):260
电源:+-15 V认证状态:Not Qualified
座面最大高度:2.65 mm标称压摆率:2.8 V/us
子类别:Operational Amplifier最大压摆率:10 mA
供电电压上限:18 V标称供电电压 (Vsup):15 V
表面贴装:YES技术:BIPOLAR
温度等级:COMMERCIAL端子面层:Matte Tin (Sn)
端子形式:GULL WING端子节距:1.27 mm
端子位置:DUAL处于峰值回流温度下的最长时间:40
标称均一增益带宽:4500 kHz最小电压增益:800000
宽度:7.5 mmBase Number Matches:1

AD743JRZ-16 数据手册

 浏览型号AD743JRZ-16的Datasheet PDF文件第6页浏览型号AD743JRZ-16的Datasheet PDF文件第7页浏览型号AD743JRZ-16的Datasheet PDF文件第8页浏览型号AD743JRZ-16的Datasheet PDF文件第10页浏览型号AD743JRZ-16的Datasheet PDF文件第11页浏览型号AD743JRZ-16的Datasheet PDF文件第12页 
AD743  
–100  
–110  
Figures 4 and 5 show two ways to buffer and amplify the output of  
a charge output transducer. Both require using an amplifier that  
has a very high input impedance, such as the AD743. Figure 4  
shows a model of a charge amplifier circuit. Here, amplifica-  
tion depends on the principle of conservation of charge at the  
input of amplifier A1, which requires that the charge on capaci-  
tor CS be transferred to capacitor CF, thus yielding an output  
voltage of Q/CF. The amplifier’s input voltage noise will appear at  
the output amplified by the noise gain (1 + (CS/CF)) of the circuit.  
–120  
–130  
–140  
TOTAL  
OUTPUT  
NOISE  
–150  
–160  
–170  
–180  
–190  
NOISE  
DUE TO  
R
ALONE  
B
C
F
NOISE  
–200  
DUE TO  
ALONE  
R
*
R1  
R2  
I
B
B
–210  
–220  
0.01  
1k  
1
10  
100  
10k  
100k  
0.1  
FREQUENCY (Hz)  
C
A1  
S
Figure 6. Noise at the Outputs of the Circuits of  
Figures 4 and 5. Gain = +10, CS = 3000 pF, RB = 22 MΩ  
C
C
R1  
R2  
S
C
*
R
*
=
B
B
F
However, this does not change the noise contribution of RB which,  
in this example, dominates at low frequencies. The graph of  
Figure 7 shows how to select an RB large enough to minimize  
this resistor’s contribution to overall circuit noise. When the  
equivalent current noise of RB ((4kT)/R equals the noise of IB  
(2qIB), there is diminishing return in making RB larger.  
*OPTIONAL, SEE TEXT  
Figure 4. Charge Amplifier Circuit  
R1  
C
*
B
10  
5.2 
؋
 10  
R
*
B
A2  
R2  
C
R
S
B
9
5.2 
؋
 10  
*OPTIONAL, SEE TEXT  
Figure 5. Model for a High Z Follower with Gain  
8
5.2 
؋
 10  
The circuit in Figure 5 is simply a high impedance follower with  
gain. Here the noise gain (1 + (R1/R2)) is the same as the gain  
from the transducer to the output. In both circuits, resistor RB is  
required as a dc bias current return.  
7
5.2 
؋
 10  
There are three important sources of noise in these circuits.  
Amplifiers A1 and A2 contribute both voltage and current noise,  
while resistor RB contributes a current noise of  
6
5.2 
؋
 10  
1pA  
10pA  
100pA  
1nA  
10nA  
INPUT BIAS CURRENT  
T
RB  
Figure 7. Graph of Resistance vs. Input Bias Current  
Where the Equivalent Noise 4kT/R, Equals the Noise  
of the Bias Current 2qIB  
˜
N = 4k  
f  
where  
To maximize dc performance over temperature, the source  
resistances should be balanced on each input of the amplifier.  
This is represented by the optional resistor RB in Figures 4 and 5.  
As previously mentioned, for best noise performance, care should  
be taken to also balance the source capacitance designated by CB.  
The value for CB in Figure 4 would be equal to CS in Figure 5.  
At values of CB over 300 pF, there is a diminishing impact on  
noise; capacitor CB can then be simply a large bypass of 0.01 µF  
or greater.  
k = Boltzman’s Constant = 1.381 × 10–23 joules/kelvin  
T = Absolute Temperature, kelvin (0°C = 273.2 kelvin)  
f = Bandwidth—in Hz (assuming an ideal “brick wall” filter)  
This must be root-sum-squared with the amplifier’s own  
current noise.  
Figure 6 shows that these circuits in Figures 4 and 5 have an  
identical frequency response and noise performance (provided  
that CS/CF = R1/ R2). One feature of the first circuit is that a “T”  
network is used to increase the effective resistance of RB and to  
improve the low frequency cutoff point by the same factor.  
–8–  
REV. E  

与AD743JRZ-16相关器件

型号 品牌 描述 获取价格 数据表
AD743JRZ-16-REEL ADI Ultralow Noise BiFET Op Amp

获取价格

AD743JRZ-16-REEL7 ADI Ultralow Noise BiFET Op Amp

获取价格

AD743KN ADI Ultralow Noise BiFET Op Amp

获取价格

AD743KQ ETC Voltage-Feedback Operational Amplifier

获取价格

AD743KR ADI IC OP-AMP, 500 uV OFFSET-MAX, 4.5 MHz BAND WIDTH, PDSO16, SOIC-16, Operational Amplifier

获取价格

AD743KR-16 ADI Ultralow Noise BiFET Op Amp

获取价格