5秒后页面跳转
AD625JN PDF预览

AD625JN

更新时间: 2024-01-30 22:59:18
品牌 Logo 应用领域
罗彻斯特 - ROCHESTER 放大器光电二极管
页数 文件大小 规格书
16页 1146K
描述
INSTRUMENTATION AMPLIFIER, 200uV OFFSET-MAX, 0.65MHz BAND WIDTH, PDIP16, PLASTIC, DIP-16

AD625JN 技术参数

是否无铅: 含铅是否Rohs认证: 不符合
生命周期:Active零件包装代码:DIP
包装说明:PLASTIC, DIP-16针数:16
Reach Compliance Code:unknown风险等级:5.68
放大器类型:INSTRUMENTATION AMPLIFIER最大平均偏置电流 (IIB):0.05 µA
标称带宽 (3dB):0.65 MHz最小共模抑制比:70 dB
最大输入失调电流 (IIO):0.035 µA最大输入失调电压:200 µV
JESD-30 代码:R-PDIP-T16JESD-609代码:e0
长度:19.055 mm湿度敏感等级:NOT APPLICABLE
负供电电压上限:-18 V标称负供电电压 (Vsup):-15 V
最大非线性:0.01%功能数量:1
端子数量:16最高工作温度:70 °C
最低工作温度:封装主体材料:PLASTIC/EPOXY
封装代码:DIP封装形状:RECTANGULAR
封装形式:IN-LINE峰值回流温度(摄氏度):NOT APPLICABLE
认证状态:COMMERCIAL座面最大高度:4.32 mm
标称压摆率:5 V/us子类别:Instrumentation Amplifier
供电电压上限:18 V标称供电电压 (Vsup):15 V
表面贴装:NO温度等级:COMMERCIAL
端子面层:TIN LEAD端子形式:THROUGH-HOLE
端子节距:2.54 mm端子位置:DUAL
处于峰值回流温度下的最长时间:NOT APPLICABLE最大电压增益:10000
最小电压增益:1标称电压增益:10
宽度:7.62 mmBase Number Matches:1

AD625JN 数据手册

 浏览型号AD625JN的Datasheet PDF文件第10页浏览型号AD625JN的Datasheet PDF文件第11页浏览型号AD625JN的Datasheet PDF文件第12页浏览型号AD625JN的Datasheet PDF文件第14页浏览型号AD625JN的Datasheet PDF文件第15页浏览型号AD625JN的Datasheet PDF文件第16页 
AD625  
GROUND RETURNS FOR BIAS CURRENTS  
high thermoelectric potential (about 35 µV°C). This means that  
care must be taken to insure that all connections (especially  
those in the input circuit of the AD625) remain isothermal. This  
includes the input leads (1, 16) and the gain sense lines (2, 15).  
These pins were chosen for symmetry, helping to desensitize the  
input circuit to thermal gradients. In addition, the user should  
also avoid air currents over the circuitry since slowly fluctuating  
Input bias currents are those currents necessary to bias the input  
transistors of a dc amplifier. There must be a direct return path  
for these currents, otherwise they will charge external capaci-  
tances, causing the output to drift uncontrollably or saturate.  
Therefore, when amplifying floatinginput sources such as  
transformers, or ac-coupled sources, there must be a dc path  
from each input to ground as shown in Figure 35.  
GND VDD VSS  
+VS  
SENSE  
RF  
+VS  
VOUT  
RG  
RF  
AD625  
15 16  
LOAD  
AD7502  
REFERENCE  
VOUT  
10  
TO POWER  
SUPPLY  
GROUND  
AD625  
9
VS  
14  
+
VIN  
0.1F LOW  
LEAKAGE  
13  
1kꢀ  
11  
Figure 35a. Ground Returns for Bias Currents with  
Transformer Coupled Inputs  
VS  
12  
AD711  
+VS  
SENSE  
RF  
VDD  
VOUT  
RG  
RF  
AD625  
VSS  
AD7510DIKD  
LOAD  
GND  
REFERENCE  
200s  
ZERO PULSE  
TO POWER  
SUPPLY  
GROUND  
VS  
A1  
A2  
A3  
A4  
Figure 36. Auto-Zero Circuit  
Figure 35b. Ground Returns for Bias Currents with  
Thermocouple Input  
thermocouple voltages will appear as flickernoise. In SPGA  
applications relay contacts and CMOS mux leads are both  
potential sources of additional thermocouple errors.  
+VS  
The base emitter junction of an input transistor can rectify out  
of band signals (i.e., RF interference). When amplifying small  
signals, these rectified voltages act as small dc offset errors. The  
AD625 allows direct access to the input transistorsbases and  
emitters enabling the user to apply some first order filtering to  
these unwanted signals. In Figure 37, the RC time constant  
should be chosen for desired attenuation of the interfering signals.  
In the case of a resistive transducer, the capacitance alone work-  
ing against the internal resistance of the transducer may suffice.  
SENSE  
RF  
VOUT  
RG  
RF  
AD625  
LOAD  
REFERENCE  
TO POWER  
SUPPLY  
GROUND  
VS  
100kꢀ  
100kꢀ  
Figure 35c. Ground Returns for Bias Currents with AC  
Coupled Inputs  
R
F
R
G
R
F
R
R
FILTER  
CAP  
FILTER  
CAP  
+IN  
IN  
AUTOZERO CIRCUITS  
In many applications it is necessary to maintain high accuracy.  
At room temperature, offset effects can be nulled by the use of  
offset trimpots. Over the operating temperature range, however,  
offset nulling becomes a problem. For these applications the  
autozero circuit of Figure 36 provides a hardware solution.  
C
C
1
16  
IN  
+IN  
+GAIN SENSE  
GAIN SENSE  
2
3
4
5
6
7
8
15  
14  
13  
12  
11  
10  
9
RTI NULL  
+V  
RTO  
NULL  
RTO  
NULL  
RTI NULL  
A1  
A2  
OTHER CONSIDERATIONS  
GAIN DRIVE  
+GAIN DRIVE  
SENSE  
One of the more overlooked problems in designing ultralow-  
drift dc amplifiers is thermocouple induced offset. In a circuit  
comprised of two dissimilar conductors (i.e., copper, kovar), a  
current flows when the two junctions are at different tempera-  
tures. When this circuit is broken, a voltage known as the  
Seebeckor thermocouple emf can be measured. Standard IC  
lead material (kovar) and copper form a thermocouple with a  
NC  
10kꢀ  
10kꢀ  
10kꢀ  
10kꢀ  
V
OUT  
REF  
V
OUT  
A3  
+V  
S
V  
S
AD625  
Figure 37. Circuit to Attenuate RF Interference  
–12–  
REV. D  

与AD625JN相关器件

型号 品牌 描述 获取价格 数据表
AD625JN/+ ETC Instrumentation Amp, Resistor-Programmable

获取价格

AD625JNZ ADI Programmable Gain Instrumentation Amplifier

获取价格

AD625JNZ ROCHESTER INSTRUMENTATION AMPLIFIER, 200 uV OFFSET-MAX, 0.65 MHz BAND WIDTH, PDIP16, PLASTIC, DIP-16

获取价格

AD625K ADI Programmable Gain Instrumentation Amplifier

获取价格

AD625KN ADI Programmable Gain Instrumentation Amplifier

获取价格

AD625KN ROCHESTER INSTRUMENTATION AMPLIFIER, 50uV OFFSET-MAX, 0.65MHz BAND WIDTH, PDIP16, PLASTIC, DIP-16

获取价格