5秒后页面跳转
WOUF PDF预览

WOUF

更新时间: 2024-09-28 08:08:39
品牌 Logo 应用领域
泰科 - TE 继电器
页数 文件大小 规格书
1页 70K
描述
Frequency Sensitive Relays

WOUF 数据手册

  
Frequency Sensitive Relays  
WILMARProtective Relays WOUF Series, Over/Underfrequency  
Function: 81 O/U  
ANSI/IEEE C37.90-1978  
UL file No. E58048  
CSA file No. LR61158  
The output contacts of frequency relays are ener-  
gized when the frequency exceeds the adjustable  
set point. Overfrequency and underfrequency re-  
lays are available in 50, 60 and 400Hz. Combination  
over/underfrequency “band pass” relays are also  
available. These are energized at rated frequency  
and de-energized during overfrequency or  
underfrequency conditions. Frequency Differential  
relays are energized above the preset frequency.  
The pick-up and drop-out frequency settings are  
independently adjustable.  
3
Operation:  
The relay will energize at normal frequency; The  
normally closed contacts will open and the normally  
open contacts will close. The relay will drop-out after  
time delay at overfrequency or underfrequency.  
Typical Curves (WOUF Series)  
90  
11  
/64" DIA.  
4 MTG. HOLES  
80  
Note: Dimensions in inches. Multiply values by 25.4 for dimensions in mm.  
PART NUMBER SELECTION  
Time Delay  
70  
60  
50  
40  
30  
Standard Time Delay  
A minimum, fixed inverse time delay is incorporated in  
all frequency relays to prevent nuisance tripping and is  
represented by the typical curves shown below.  
Adjustable Time Delay  
If additional time delay is required, a suffix "T" must be  
added to the part number. This allows the minimum  
fixed time delay to be field-adjustable up to 20 seconds  
PRODUCT SPECIFICATIONS  
WOUF Series  
Part Number  
0
1
2
3
4
5
6
Drop-Out Time Delay  
Nominal Voltage (±20%) .................  
Nonimal Frequencies .......................  
Trip Point ..........................................  
120, 230, 380 and 460 volts  
50, 60 and 400 Hz.  
PART NUMBER SELECTION  
Sample Part No.  
Type:  
WOUF-12-5060-T  
Screwdriver adjustable. Adjustment range in  
accordance with ordering information.  
WOUF = Over/Underfrequency  
Input Voltage (VAC)  
12 = 120  
-40oC to +65oC  
Operating Temperature ....................  
Differential ........................................ The frequency pick-up to drop-out differential is .5% max  
23 - 230  
38 = 380  
Voltage Drift .....................................  
± 0.05% maximum frequency error for input voltage  
variation of ±10%  
46 = 460  
Frequency Range  
UF Adj.  
OF Adj.  
See Time versus Frequency curves  
In compliance with C37-90B ANSI/IEEE  
One set N.O., one set N.C.  
Time Delay ........................................  
Surge Withstand Capability .............  
Output Contacts ...............................  
50 =  
60 =  
40-50 Hz 50-60 Hz  
50-60 Hz 60-70 Hz  
400 = 350-400 Hz400-450 Hz  
Time Delay Options  
5 amp resistive at 120 VAC or 28 VDC  
Contact Ratings ................................  
blank = Per Time Curve  
T = Adjustable  
Notes:  
1.  
2.  
3.  
Remove black screws for access to the frequency and the time adjustments.  
Clockwise rotation of the frequency potentiometer will raise the frequency trip point.  
Clockwise rotation of the time adjustment, option "T" will increase the drop-out time delay.  
Consult factory for additional models.  
4 0  
Tyco Electronics / www.tycoelectronics.com / Factory Direct Technical Support: 800-253-4560, ext. 2023 (U.S., Canada, Mexico) or 805-220-2020, ext. 2023 (International)  

与WOUF相关器件

型号 品牌 获取价格 描述 数据表
WOUF-12-5060-T TE

获取价格

Frequency Sensitive Relays
WOUV TE

获取价格

Voltage Sensitive Relays
WOUV-12DC-A MACOM

获取价格

Voltage Sensitive Relays
WOUVT TE

获取价格

Voltage Sensitive Relays
WOUVT-1-120AC TE

获取价格

Voltage Sensitive Relays
WOXG HY

获取价格

GLASS PASSIVATED BRIDGE RECTIFIERS
WOXMG HY

获取价格

GLASS PASSIVATED BRIDGE RECTIFIERS
WP0003 LATTICE

获取价格

Revolutionary Hardware Management Solutions
WP0005 LATTICE

获取价格

Video Bridging Solution Promises New Level of Design Flexibility and Innovation
WP0008 LATTICE

获取价格

The Industry Case for Distributed Heterogeneous Processing