5秒后页面跳转
RHR1K160D PDF预览

RHR1K160D

更新时间: 2024-02-18 16:34:31
品牌 Logo 应用领域
英特矽尔 - INTERSIL 二极管光电二极管局域网
页数 文件大小 规格书
9页 125K
描述
1A, 600V Hyperfast Dual Diode

RHR1K160D 技术参数

生命周期:Obsolete零件包装代码:SOIC
包装说明:R-PDSO-G8针数:8
Reach Compliance Code:unknownECCN代码:EAR99
HTS代码:8541.10.00.80风险等级:5.84
Is Samacsys:N其他特性:FREE WHEELING DIODE
配置:SEPARATE, 2 ELEMENTS二极管元件材料:SILICON
二极管类型:RECTIFIER DIODEJEDEC-95代码:MS-012AA
JESD-30 代码:R-PDSO-G8元件数量:2
端子数量:8最高工作温度:150 °C
最低工作温度:-55 °C最大输出电流:1 A
封装主体材料:PLASTIC/EPOXY封装形状:RECTANGULAR
封装形式:SMALL OUTLINE最大功率耗散:2.5 W
认证状态:Not Qualified最大重复峰值反向电压:600 V
最大反向恢复时间:0.025 µs表面贴装:YES
技术:AVALANCHE端子形式:GULL WING
端子位置:DUALBase Number Matches:1

RHR1K160D 数据手册

 浏览型号RHR1K160D的Datasheet PDF文件第2页浏览型号RHR1K160D的Datasheet PDF文件第3页浏览型号RHR1K160D的Datasheet PDF文件第4页浏览型号RHR1K160D的Datasheet PDF文件第6页浏览型号RHR1K160D的Datasheet PDF文件第7页浏览型号RHR1K160D的Datasheet PDF文件第8页 
RHR1K160D  
Thermal Resistance vs Mounting Pad Area  
350  
300  
250  
200  
150  
100  
50  
The maximum rated junction temperature, T , and the  
R
= 110.2 - 25.24 x ln (AREA)  
JM  
θJA  
thermal resistance of the heat dissipating path determines  
the maximum allowable device power dissipation, P , in an  
DM  
o
2
239 C/W - 0.006in  
application. Therefore the application’s ambient temperature,  
o
o
o
2
T ( C), and thermal resistance R  
( C/W) must be  
201 C/W - 0.027in  
A
θJA  
reviewed to ensure that T is never exceeded. Equation 1  
JM  
mathematically represents the relationship and serves as  
the basis for establishing the rating of the part.  
(T  
T )  
A
JM  
Z
(EQ. 1)  
P
= ----------------------------  
DM  
R
= 43.81 - 22.66 x ln (AREA)  
θβ  
θJA  
0.001  
0.01  
0.1  
In using surface mount devices such as the SOP-8 package,  
the environment in which it is applied will have a significant  
influence on the part’s current and maximum power  
2
AREA, TOP COPPER AREA (in )  
FIGURE 13. THERMAL RESISTANCE vs MOUNTING PAD AREA  
dissipation ratings. Precise determination of P  
and influenced by many factors:  
is complex  
DM  
Displayed on the curve are R  
θJA  
values listed in the  
Electrical Specifications table. These points were chosen to  
depict the compromise between the copper board area, the  
thermal resistance and ultimately the power dissipation,  
1. Mounting pad area onto which the device is attached and  
whether there is copper on one side or both sides of the  
board.  
P
. Thermal resistances corresponding to other  
2. The number of copper layers and the thickness of the  
board.  
DM  
component side copper areas can be obtained from Figure  
13 or by calculation using Equation 2. The area, in square  
inches is the top copper board area, the thermal resistance  
3. The use of external heat sinks.  
4. The use of thermal vias.  
and ultimately the power dissipation, P  
DM  
.
5. Air flow and board orientation.  
6. For non steady state applications, the pulse width, the  
duty cycle and the transient thermal response of the part,  
the board and the environment they are in.  
R
= 110.18 25.24 × ln(Area)  
(EQ. 2)  
θJA  
While Equation 2 describes the thermal resistance of a  
single die, the dual die SOP-8 package introduces an  
additional thermal component, thermal coupling resistance,  
Intersil provides thermal information to assist the designer’s  
preliminary application evaluation. Figure 13 defines the  
R
. Equation 3 describes R as a function of the top  
R
for the device as a function of the top copper  
θβ θβ  
θJA  
copper mounting pad area.  
(component side) area. This is for a horizontally positioned  
FR-4 board with 2 oz. copper after 1000 seconds of steady  
state power with no air flow. This graph provides the  
necessary information for calculation of the steady state  
junction temperature or power dissipation. Pulse  
applications can be evaluated using the Intersil device  
SPICE thermal model or manually utilizing the normalized  
maximum transient thermal impedance curve.  
R
= 43.81 22.66 × ln(Area)  
(EQ. 3)  
θβ  
The thermal coupling resistance vs. copper area is also  
graphically depicted in Figure 13. It is important to note the  
thermal resistance (R  
(Rθβ) are equivalent for both die. For example at 0.1 square  
inches of copper:  
) and thermal coupling resistance  
θJA  
o
R
R
= R  
= 168 C/W  
o
θJA1  
θJA2  
= Rθβ2 = 96 C/W  
θβ1  
T
and T define the junction temperature of the  
J2  
J1  
respective die. Similarly, P and P define the power  
1
2
dissipated in each die. The steady state junction  
temperature can be calculated using Equation 4 for die 1  
and Equation 5 for die 2.  
Example: Use Equation 4 to calculate T and Equation 5 to  
J1  
calculate T with the following conditions. Die 2 is  
J2  
dissipating 0.5W; die 1 is dissipating 0W; the ambient  
o
temperature is 60 C; the package is mounted to a top  
copper area of 0.1 square inches per die.  
5

与RHR1K160D相关器件

型号 品牌 获取价格 描述 数据表
RHR1K160D96 RENESAS

获取价格

1A, 600V, 2 ELEMENT, SILICON, SIGNAL DIODE, MS-012AA, PLASTIC, SO-8
RHR1Y75120CC ETC

获取价格

COMMON CATHODE DIODE ARRAY|TO-264AA
RHR2BL-S PANDUIT

获取价格

Thermal Transfer Resin Ribbon
RHR4BL-S PANDUIT

获取价格

Thermal Transfer Resin Ribbon
RHR4BL-Z PANDUIT

获取价格

Thermal Transfer Resin Ribbon
RHR61 STMICROELECTRONICS

获取价格

抗辐照低功耗轨到轨运算放大器
RHR64 STMICROELECTRONICS

获取价格

抗辐照低功耗轨到轨四运算放大器
RHR801 STMICROELECTRONICS

获取价格

抗辐照超高速比较器
RHRA1560CC FAIRCHILD

获取价格

Hyperfast Rectifier
RHRA1560CCTU FAIRCHILD

获取价格

Hyperfast Rectifier