5秒后页面跳转
ADM660ARUZ-REEL PDF预览

ADM660ARUZ-REEL

更新时间: 2024-02-01 12:24:13
品牌 Logo 应用领域
亚德诺 - ADI 转换器稳压器开关式稳压器或控制器电源电路开关式控制器光电二极管
页数 文件大小 规格书
11页 179K
描述
CMOS Switched-Capacitor Voltage Converters

ADM660ARUZ-REEL 技术参数

是否无铅:含铅是否Rohs认证:符合
生命周期:Active零件包装代码:SOIC
包装说明:ROHS COMPLIANT, MS-012AA, SOIC-8针数:8
Reach Compliance Code:compliantECCN代码:EAR99
HTS代码:8542.39.00.01风险等级:0.84
Is Samacsys:N模拟集成电路 - 其他类型:SWITCHED CAPACITOR CONVERTER
控制模式:VOLTAGE-MODE最大输入电压:7 V
最小输入电压:1.5 V标称输入电压:5 V
JESD-30 代码:R-PDSO-G8JESD-609代码:e3
长度:4.9 mm湿度敏感等级:1
功能数量:1端子数量:8
最高工作温度:85 °C最低工作温度:-40 °C
最大输出电流:0.1 A封装主体材料:PLASTIC/EPOXY
封装代码:SOP封装等效代码:SOP8,.25
封装形状:RECTANGULAR封装形式:SMALL OUTLINE
峰值回流温度(摄氏度):260认证状态:Not Qualified
座面最大高度:1.75 mm子类别:Other Analog ICs
表面贴装:YES切换器配置:DOUBLER INVERTER
最大切换频率:120 kHz技术:CMOS
温度等级:INDUSTRIAL端子面层:Matte Tin (Sn)
端子形式:GULL WING端子节距:1.27 mm
端子位置:DUAL处于峰值回流温度下的最长时间:30
宽度:3.9 mmBase Number Matches:1

ADM660ARUZ-REEL 数据手册

 浏览型号ADM660ARUZ-REEL的Datasheet PDF文件第4页浏览型号ADM660ARUZ-REEL的Datasheet PDF文件第5页浏览型号ADM660ARUZ-REEL的Datasheet PDF文件第6页浏览型号ADM660ARUZ-REEL的Datasheet PDF文件第8页浏览型号ADM660ARUZ-REEL的Datasheet PDF文件第9页浏览型号ADM660ARUZ-REEL的Datasheet PDF文件第10页 
ADM660/ADM8660  
160  
140  
120  
100  
80  
60  
50  
40  
30  
20  
10  
0
V+ = +1.5V  
LV = GND  
FC =V+  
C1, C2 = 2.2F  
60  
40  
V+ = +3V  
V+ = +5V  
20  
0
–40  
–20  
0
20  
40  
60  
80  
100  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE –  
C
TEMPERATURE – C  
TPC 13. Charge-Pump Frequency vs. Temperature  
TPC 14. Output Resistance vs. Temperature  
GENERAL INFORMATION  
Switched Capacitor Theory of Operation  
The ADM660/ADM8660 is a switched capacitor voltage con-  
verter that can be used to invert the input supply voltage. The  
ADM660 can also be used in a voltage doubling mode. The  
voltage conversion task is achieved using a switched capacitor  
technique using two external charge storage capacitors. An on-  
board oscillator and switching network transfers charge between  
the charge storage capacitors. The basic principle behind the  
voltage conversion scheme is illustrated in Figures 1 and 2.  
As already described, the charge pump on the ADM660/ADM8660  
uses a switched capacitor technique in order to invert or double  
the input supply voltage. Basic switched capacitor theory is  
discussed below.  
A switched capacitor building block is illustrated in Figure 3.  
With the switch in position A, capacitor C1 will charge to voltage  
V1. The total charge stored on C1 is q1 = C1V1. The switch is  
then flipped to position B discharging C1 to voltage V2. The  
charge remaining on C1 is q2 = C1V2. The charge transferred  
to the output V2 is, therefore, the difference between q1 and  
q2, so q = q1–q2 = C1 (V1–V2).  
CAP+  
+
S1  
S2  
S3  
S4  
V+  
C1  
OUT = –V+  
+
CAP–  
+ 2  
C2  
A
B
Φ1  
Φ2  
V1  
V2  
OSCILLATOR  
R
C2  
L
C1  
Figure 1. Voltage Inversion Principle  
Figure 3. Switched Capacitor Building Block  
CAP+  
+
S1  
S2  
S3  
S4  
V+  
V
= 2V+  
OUT  
+
As the switch is toggled between A and B at a frequency f, the  
charge transfer per unit time or current is:  
C1  
C2  
V+  
CAP–  
+ 2  
I = f(q) = f(C1)(V1V 2)  
Φ1  
Φ2  
OSCILLATOR  
Therefore,  
I = (V1V 2)/(1/fC1) = (V1V 2)/(REQ  
where REQ = 1/fC1  
)
Figure 2. Voltage Doubling Principle  
Figure 1 shows the voltage inverting configuration, while Figure 2  
shows the configuration for voltage doubling. An oscillator  
generating antiphase signals φ1 and φ2 controls switches S1, S2,  
and S3, S4. During φ1, switches S1 and S2 are closed charging  
C1 up to the voltage at V+. During φ2, S1 and S2 open and S3  
and S4 close. With the voltage inverter configuration during φ2,  
the positive terminal of C1 is connected to GND via S3 and the  
negative terminal of C1 connects to VOUT via S4. The net result  
is voltage inversion at VOUT wrt GND. Charge on C1 is trans-  
ferred to C2 during φ2. Capacitor C2 maintains this voltage  
during φ1. The charge transfer efficiency depends on the on-  
resistance of the switches, the frequency at which they are being  
switched, and also on the equivalent series resistance (ESR) of  
the external capacitors. The reason for this is explained in the  
following section. For maximum efficiency, capacitors with low  
ESR are, therefore, recommended.  
The switched capacitor may, therefore, be replaced by an equivalent  
resistance whose value is dependent on both the capacitor size  
and the switching frequency. This explains why lower capacitor  
values may be used with higher switching frequencies. It should  
be remembered that as the switching frequency is increased the  
power consumption will increase due to some charge being lost  
at each switching cycle. As a result, at high frequencies, the power  
efficiency starts decreasing. Other losses include the resistance  
of the internal switches and the equivalent series resistance (ESR)  
of the charge storage capacitors.  
R
EQ  
V1  
V2  
C2  
R
L
R
= 1/fC1  
EQ  
The voltage doubling configuration reverses some of the con-  
nections, but the same principle applies.  
Figure 4. Switched Capacitor Equivalent Circuit  
C
REV.  
–7–  

与ADM660ARUZ-REEL相关器件

型号 品牌 描述 获取价格 数据表
ADM660ARUZ-REEL7 ADI CMOS Switched-Capacitor Voltage Converters

获取价格

ADM660ARZ ADI CMOS Switched-Capacitor Voltage Converters

获取价格

ADM660ARZ-REEL ADI CMOS Switched-Capacitor Voltage Converters

获取价格

ADM660ARZ-REEL7 ADI CMOS Switched-Capacitor Voltage Converters

获取价格

ADM663 ADI Tri-Mode: +3.3 V, +5 V, Adjustable Micropower Linear Voltage Regulators

获取价格

ADM663A ADI Tri-Mode: +3.3 V, +5 V, Adjustable Micropower Linear Voltage Regulators

获取价格