5秒后页面跳转
AD637KD/+ PDF预览

AD637KD/+

更新时间: 2024-01-07 04:50:54
品牌 Logo 应用领域
其他 - ETC 转换器
页数 文件大小 规格书
16页 193K
描述
RMS-TO-DC CONVERTER

AD637KD/+ 技术参数

是否Rohs认证: 不符合生命周期:Obsolete
零件包装代码:DIP包装说明:CERDIP-14
针数:14Reach Compliance Code:not_compliant
ECCN代码:EAR99HTS代码:8542.39.00.01
风险等级:5.08Is Samacsys:N
转换器类型:RMS TO DC CONVERTERJESD-30 代码:R-GDIP-T14
JESD-609代码:e0长度:19.43 mm
最大线性误差 (EL):0.05%最大负电源电压:-18 V
最小负电源电压:-3 V标称负供电电压:-15 V
功能数量:1端子数量:14
最大工作频率:0.15 MHz最高工作温度:125 °C
最低工作温度:-55 °C封装主体材料:CERAMIC, GLASS-SEALED
封装代码:DIP封装等效代码:DIP14,.3
封装形状:RECTANGULAR封装形式:IN-LINE
峰值回流温度(摄氏度):NOT SPECIFIED最大正输入电压:7 V
电源:+-15 V认证状态:Not Qualified
座面最大高度:5.08 mm子类别:Analog Special Function Converters
最大压摆率:3 mA最大供电电压:18 V
最小供电电压:3 V标称供电电压:15 V
表面贴装:NO温度等级:MILITARY
端子面层:Tin/Lead (Sn/Pb)端子形式:THROUGH-HOLE
端子节距:2.54 mm端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED最大总误差:0.7%
宽度:7.62 mmBase Number Matches:1

AD637KD/+ 数据手册

 浏览型号AD637KD/+的Datasheet PDF文件第3页浏览型号AD637KD/+的Datasheet PDF文件第4页浏览型号AD637KD/+的Datasheet PDF文件第5页浏览型号AD637KD/+的Datasheet PDF文件第7页浏览型号AD637KD/+的Datasheet PDF文件第8页浏览型号AD637KD/+的Datasheet PDF文件第9页 
AD637  
FUNCTIONAL DESCRIPTION  
STANDARD CONNECTION  
The AD637 embodies an implicit solution of the rms equation  
that overcomes the inherent limitations of straightforward rms  
computation. The actual computation performed by the AD637  
follows the equation  
The AD637 is simple to connect for a majority of rms measure-  
ments. In the standard rms connection shown in Figure 2, only a  
single external capacitor is required to set the averaging time  
constant. In this configuration, the AD637 will compute the true  
rms of any input signal. An averaging error, the magnitude of  
which will be dependent on the value of the averaging capacitor,  
will be present at low frequencies. For example, if the filter  
capacitor, CAV, is 4 µF, this error will be 0.1% at 10 Hz and  
increases to 1% at 3 Hz. If it is desired to measure only ac  
signals, the AD637 can be ac coupled through the addition of a  
nonpolar capacitor in series with the input as shown in Figure 2.  
VIN 2  
V rms = Avg  
V rms  
Figure 1 is a simplified schematic of the AD637, subdivided  
into four major sections: absolute value circuit (active recti-  
fier), square/divider, filter circuit, and buffer amplifier. The  
input voltage VIN, which can be ac or dc, is converted to a  
unipolar current I1 by the active rectifier A1, A2. I1 drives one  
input of the squarer/divider, which has the transfer function  
BUFFER  
AD637  
1
NC  
14  
13  
I12  
I4 =  
I3  
OPTIONAL  
AC COUPLING  
CAPACITOR  
ABSOLUTE  
VALUE  
2
3
V
IN  
The output current of the squarer/divider I4 drives A4, which  
forms a low-pass filter with the external averaging capacitor. If the  
RC time constant of the filter is much greater than the longest  
period of the input signal, then A4’s output will be proportional  
to the average of I4. The output of this filter amplifier is used by  
A3 to provide the denominator current I3, which equals Avg. I4  
and is returned to the squarer/divider to complete the implicit  
rms computation  
12 NC  
11  
BIAS  
SECTION  
SQUARER/DIVIDER  
+V  
4
5
6
7
S
25kꢁ  
V  
10  
S
25kꢁ  
V
=
9
8
O
V
2
IN  
C
AV  
FILTER  
2   
I1  
I = Avg  
= I rms  
4
1
NC = NO CONNECT  
I4  
Figure 2. Standard RMS Connection  
and  
The performance of the AD637 is tolerant of minor variations in  
the power supply voltages; however, if the supplies being used  
exhibit a considerable amount of high frequency ripple it is  
advisable to bypass both supplies to ground through a 0.1 µF  
ceramic disc capacitor placed as close to the device as possible.  
VOUT = VIN rms  
If the averaging capacitor is omitted, the AD637 will compute the  
absolute value of the input signal. A nominal 5 pF capacitor should  
be used to ensure stability. The circuit operates identically to that  
of the rms configuration except that I3 is now equal to I4, giving  
The output signal range of the AD637 is a function of the sup-  
ply voltages, as shown in Figure 3. The output signal can be  
used buffered or nonbuffered depending on the characteristics  
of the load. If no buffer is needed, tie the buffer input (Pin 1) to  
common. The output of the AD637 is capable of driving 5 mA  
into a 2 kload without degrading the accuracy of the device.  
I12  
I4 =  
I4  
I4 = I1  
The denominator current can also be supplied externally by pro-  
viding a reference voltage, VREF, to Pin 6. The circuit operates  
identically to the rms case except that I3 is now proportional to  
VREF. Thus:  
20  
15  
10  
5
I12  
I4 = Avg  
I3  
and  
2
VIN  
VDEN  
VO =  
This is the mean square of the input signal.  
0
0
3  
5  
10  
15  
18  
SUPPLY VOLTAGE DUAL SUPPLY V  
Figure 3. AD637 Max VOUT vs. Supply Voltage  
–6–  
REV. F  

与AD637KD/+相关器件

型号 品牌 描述 获取价格 数据表
AD637KDZ ADI High Precision, Wideband RMS-to-DC Converter

获取价格

AD637KQ ADI High Precision, Wide-Band RMS-to-DC Converter

获取价格

AD637KR ADI High Precision, Wide-Band RMS-to-DC Converter

获取价格

AD637KRZ ADI High Precision, Wideband RMS-to-DC Converter

获取价格

AD637S ADI High Precision, Wide-Band RMS-to-DC Converter

获取价格

AD637SCHIPS ADI High Precision, Wide-Band RMS-to-DC Converter

获取价格