5秒后页面跳转
AD736JR PDF预览

AD736JR

更新时间: 2024-01-25 05:17:24
品牌 Logo 应用领域
亚德诺 - ADI 转换器模拟特殊功能转换器光电二极管
页数 文件大小 规格书
8页 220K
描述
Low Cost, Low Power, True RMS-to-DC Converter

AD736JR 技术参数

是否无铅: 含铅是否Rohs认证: 符合
生命周期:Not Recommended零件包装代码:SOIC
包装说明:SOP, SOP8,.25针数:8
Reach Compliance Code:compliantECCN代码:EAR99
HTS代码:8542.39.00.01风险等级:5.07
转换器类型:RMS TO DC CONVERTERJESD-30 代码:R-PDSO-G8
JESD-609代码:e3长度:4.9 mm
最大线性误差 (EL):0.35%湿度敏感等级:1
最大负电源电压:-16.5 V最小负电源电压:-3.2 V
标称负供电电压:-5 V功能数量:1
端子数量:8最大工作频率:0.005 MHz
最高工作温度:70 °C最低工作温度:
封装主体材料:PLASTIC/EPOXY封装代码:SOP
封装等效代码:SOP8,.25封装形状:RECTANGULAR
封装形式:SMALL OUTLINE峰值回流温度(摄氏度):260
最大正输入电压:1 V电源:+-5 V
认证状态:Not Qualified座面最大高度:1.75 mm
子类别:Analog Special Function Converters最大压摆率:0.27 mA
最大供电电压:16.5 V最小供电电压:2.8 V
标称供电电压:5 V表面贴装:YES
技术:BIPOLAR温度等级:COMMERCIAL
端子面层:Matte Tin (Sn)端子形式:GULL WING
端子节距:1.27 mm端子位置:DUAL
处于峰值回流温度下的最长时间:30最大总误差:2%
宽度:3.9 mmBase Number Matches:1

AD736JR 数据手册

 浏览型号AD736JR的Datasheet PDF文件第2页浏览型号AD736JR的Datasheet PDF文件第3页浏览型号AD736JR的Datasheet PDF文件第4页浏览型号AD736JR的Datasheet PDF文件第5页浏览型号AD736JR的Datasheet PDF文件第7页浏览型号AD736JR的Datasheet PDF文件第8页 
AD736  
tions: input amplifier, full-wave rectifier, rms core, output am-  
plifier and bias sections. T he FET input amplifier allows  
both a high impedance, buffered input (Pin 2) or a low imped-  
ance, wide-dynamic-range input (Pin 1). T he high impedance  
input, with its low input bias current, is well suited for use with  
high impedance input attenuators.  
TYP ES O F AC MEASUREMENT  
T he AD736 is capable of measuring ac signals by operating as  
either an average responding or a true rms-to-dc converter. As  
its name implies, an average responding converter computes the  
average absolute value of an ac (or ac and dc) voltage or current  
by full wave rectifying and low-pass filtering the input signal;  
this will approximate the average. T he resulting output, a dc  
“average” level, is then scaled by adding (or reducing) gain; this  
scale factor converts the dc average reading to an rms equivalent  
value for the waveform being measured. For example, the aver-  
age absolute value of a sine-wave voltage is 0.636 that of VPEAK  
the corresponding rms value is 0.707 times VPEAK. T herefore,  
for sine-wave voltages, the required scale factor is 1.11 (0.707  
divided by 0.636).  
T he output of the input amplifier drives a full wave precision  
rectifier, which in turn, drives the rms core. It is in the core that  
the essential rms operations of squaring, averaging and square  
rooting are performed, using an external averaging capacitor,  
;
C
AV. Without CAV, the rectified input signal travels through the  
core unprocessed, as is done with the average responding con-  
nection (Figure 17).  
A final subsection, an output amplifier, buffers the output from  
the core and also allows optional low-pass filtering to be per-  
formed via external capacitor, CF, connected across the feed-  
back path of the amplifier. In the average responding  
connection, this is where all of the averaging is carried out. In  
the rms circuit, this additional filtering stage helps reduce any  
output ripple which was not removed by the averaging capaci-  
In contrast to measuring the “average” value, true rms measure-  
ment is a “universal language” among waveforms, allowing the  
magnitudes of all types of voltage (or current) waveforms to be  
compared to one another and to dc. RMS is a direct measure of  
the power or heating value of an ac voltage compared to that of  
dc: an ac signal of 1 volt rms will produce the same amount of  
heat in a resistor as a 1 volt dc signal.  
tor, CAV  
.
Mathematically, the rms value of a voltage is defined (using a  
simplified equation) as:  
V rms = Avg.(V 2 )  
T his involves squaring the signal, taking the average, and then  
obtaining the square root. T rue rms converters are “smart recti-  
fiers”: they provide an accurate rms reading regardless of the  
type of waveform being measured. However, average responding  
converters can exhibit very high errors when their input signals  
deviate from their precalibrated waveform; the magnitude of the  
error will depend upon the type of waveform being measured.  
As an example, if an average responding converter is calibrated  
to measure the rms value of sine-wave voltages, and then is used  
to measure either symmetrical square waves or dc voltages, the  
converter will have a computational error 11% (of reading)  
higher than the true rms value (see T able I).  
AD 736 TH EO RY O F O P ERATIO N  
As shown by Figure 16, the AD736 has five functional subsec-  
Figure 16. AD736 True RMS Circuit  
Table I. Error Introduced by an Average Responding Circuit When Measuring Com m on Waveform s  
Waveform Type  
1 Volt P eak  
Am plitude  
Crest Factor  
(VP EAK/V rm s)  
True rm s Value  
Average Responding  
Circuit Calibrated to  
Read rm s Value of  
% of Reading Error*  
Using Average  
Responding Circuit  
Sine Waves Will Read  
Undistorted  
Sine Wave  
1.414  
0.707 V  
0.707 V  
0%  
Symmetrical  
Square Wave  
1.00  
1.73  
1.00 V  
1.11 V  
+11.0%  
–3.8%  
Undistorted  
T riangle Wave  
0.577 V  
0.555 V  
Gaussian  
Noise (98% of  
Peaks <1 V)  
3
0.333 V  
0.295 V  
–11.4%  
Rectangular  
Pulse T rain  
2
10  
0.5 V  
0.1 V  
0.278 V  
0.011 V  
–44%  
–89%  
SCR Waveforms  
50% Duty Cycle  
25% Duty Cycle  
2
4.7  
0.495 V  
0.212 V  
0.354 V  
0.150 V  
–28%  
–30%  
Average RespondingValue True rmsValue  
*% of Reading Error =  
×100%  
True rmsValue  
–6–  
REV. C  

与AD736JR相关器件

型号 品牌 描述 获取价格 数据表
AD736JR-REEL ADI Low Cost, Low Power, True RMS-to-DC Converter

获取价格

AD736JR-REEL7 ADI Low Cost, Low Power, True RMS-to-DC Converter

获取价格

AD736JR-REEL-7 ADI Low Cost, Low Power, True RMS-to-DC Converter

获取价格

AD736JRZ ADI Low Cost, Low Power, True RMS-to-DC Converter

获取价格

AD736JRZ-R7 ADI Low Cost, Low Power, True RMS-to-DC Converter

获取价格

AD736JRZ-RL ADI Low Cost, Low Power, True RMS-to-DC Converter

获取价格