5秒后页面跳转
A1280A-VQG176M PDF预览

A1280A-VQG176M

更新时间: 2022-04-27 01:49:24
品牌 Logo 应用领域
美高森美 - MICROSEMI /
页数 文件大小 规格书
54页 2550K
描述
ACT 2 Family FPGAs

A1280A-VQG176M 数据手册

 浏览型号A1280A-VQG176M的Datasheet PDF文件第3页浏览型号A1280A-VQG176M的Datasheet PDF文件第4页浏览型号A1280A-VQG176M的Datasheet PDF文件第5页浏览型号A1280A-VQG176M的Datasheet PDF文件第7页浏览型号A1280A-VQG176M的Datasheet PDF文件第8页浏览型号A1280A-VQG176M的Datasheet PDF文件第9页 
2 – Detailed Specifications  
Operating Conditions  
Table 2-1 • Absolute Maximum Ratings1  
Symbol  
VCC  
VI  
Parameter  
DC supply voltage  
Limits  
–0.5 to +7.0  
–0.5 to VCC + 0.5  
–0.5 to VCC + 0.5  
±20  
Units  
V
Input voltage  
V
VO  
Output voltage  
V
IIO  
I/O source sink current2  
Storage temperature  
mA  
°C  
TSTG  
Notes:  
–65 to +150  
1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.  
Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Device should not be  
operated outside the recommended operating conditions.  
2. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater  
than VCC + 0.5 V for less than GND –0.5 V, the internal protection diodes will be forward biased and can draw  
excessive current.  
Table 2-2 • Recommended Operating Conditions  
Parameter  
Commercial  
0 to +70  
±5  
Industrial  
–40 to +85  
±10  
Military  
–55 to +125  
±10  
Units  
°C  
Temperature range*  
Power supply tolerance  
%VCC  
Note: *Ambient temperature (TA) is used for commercial and industrial; case temperature (TC) is used for military.  
Revision 8  
2-1  
Detailed Specifications  
Table 2-3 • Electrical Specifications  
Commercial  
Industrial  
Min. Max.  
Military  
Max.  
Symbol  
Parameter  
(IOH = –10 mA)2  
Min.  
Max.  
Min.  
Units  
V
VOH1  
2.4  
3.84  
(IOH = –6 mA)  
(IOH = –4 mA)  
(IOL = 10 mA)2  
(IOL = 6 mA)  
V
3.7  
3.7  
V
VOL1  
0.5  
V
0.33  
0.8  
0.40  
0.8  
0.40  
0.8  
V
VIL  
–0.3  
2.0  
–0.3  
2.0  
–0.3  
2.0  
V
VIH  
VCC + 0.3  
500  
10  
VCC + 0.3  
500  
VCC + 0.3  
500  
V
2
Input Transition Time tR, tF  
CIO I/O capacitance2,3  
ns  
pF  
mA  
µA  
10  
10  
Standby Current, ICC4 (typical = 1 mA)  
Leakage Current5  
2
10  
20  
–10  
+10  
–10  
+10  
–10  
+10  
ICC(D)  
Dynamic VCC supply current. See the Power Dissipation section.  
Notes:  
1. Only one output tested at a time. VCC = minimum.  
2. Not tested, for information only.  
3. Includes worst-case PG176 package capacitance. VOUT = 0 V, f = 1 MHz  
4. All outputs unloaded. All inputs = VCC or GND, typical ICC = 1 mA. ICC limit includes IPP and ISV during normal  
operations.  
5. VOUT, VIN = VCC or GND.  
2-2  
Revision 8  
ACT 2 Family FPGAs  
Package Thermal Characteristics  
The device junction to case thermal characteristic is θjc, and the junction to ambient air characteristic is  
θja. The thermal characteristics for θja are shown with two different air flow rates.  
Maximum junction temperature is 150°C.  
A sample calculation of the absolute maximum power dissipation allowed for a PQ160 package at  
commercial temperature and still air is as follows:  
Max. junction temp. (°C) Max. ambient temp. (°C)  
150°C 70°C  
---------------------------------------------------------------------------------------------------------------------------------------  
-----------------------------------  
=
= 2.4 W  
θja°C/W  
33°C/W  
EQ 1  
Table 2-4 • Package Thermal Characteristics  
θja  
θja  
Package Type*  
Pin Count  
100  
θjc  
5
Still Air  
300 ft./min.  
Units  
Ceramic Pin Grid Array  
35  
17  
15  
12  
15  
40  
32  
30  
28  
35  
25  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
132  
5
30  
176  
8
23  
Ceramic Quad Flatpack  
Plastic Quad Flatpack1  
172  
8
25  
100  
13  
15  
15  
12  
12  
15  
48  
144  
40  
160  
38  
Plastic Leaded Chip Carrier  
Very Thin Quad Flatpack  
Thin Quad Flatpack  
84  
37  
100  
43  
176  
32  
Notes: (Maximum Power in Still Air)  
1. Maximum power dissipation values for PQFP packages are 1.9 W (PQ100), 2.3 W (PQ144), and 2.4 W  
(PQ160).  
2. Maximum power dissipation for PLCC packages is 2.7 W.  
3. Maximum power dissipation for VQFP packages is 2.3 W.  
4. Maximum power dissipation for TQFP packages is 3.1 W.  
Power Dissipation  
P = [ICC standby + ICCactive] * VCC + IOL * VOL * N + IOH* (VCC – VOH) * M  
EQ 2  
where:  
ICC standby is the current flowing when no inputs or outputs are changing  
ICCactive is the current flowing due to CMOS switching.  
IOL and IOH are TTL sink/source currents.  
VOL and VOH are TTL level output voltages.  
N is the number of outputs driving TTL loads to VOL.  
M is the number of outputs driving TTL loads to VOH.  
An accurate determination of N and M is problematical because their values depend on the family type,  
design details, and on the system I/O. The power can be divided into two components: static and active.  
Revision 8  
2-3  
Detailed Specifications  
Static Power Component  
Microsemi FPGAs have small static power components that result in lower power dissipation than PALs  
or PLDs. By integrating multiple PALs/PLDs into one FPGA, an even greater reduction in board-level  
power dissipation can be achieved.  
The power due to standby current is typically a small component of the overall power. Standby power is  
calculated in Table 2-5 for commercial, worst case conditions.  
Table 2-5 • Standby Power Calculation  
ICC  
VCC  
Power  
2 mA  
5.25 V  
10.5 mW  
The static power dissipated by TTL loads depends on the number of outputs driving high or low and the  
DC load current. Again, this value is typically small. For instance, a 32-bit bus sinking 4 mA at 0.33 V will  
generate 42 mW with all outputs driving low, and 140 mW with all outputs driving high. The actual  
dissipation will average somewhere between as I/Os switch states with time.  
Active Power Component  
Power dissipation in CMOS devices is usually dominated by the active (dynamic) power dissipation. This  
component is frequency dependent, a function of the logic and the external I/O. Active power dissipation  
results from charging internal chip capacitances of the interconnect, unprogrammed antifuses, module  
inputs, and module outputs, plus external capacitance due to PC board traces and load device inputs.  
An additional component of the active power dissipation is the totem-pole current in CMOS transistor  
pairs. The net effect can be associated with an equivalent capacitance that can be combined with  
frequency and voltage to represent active power dissipation.  
Equivalent Capacitance  
The power dissipated by a CMOS circuit can be expressed by EQ 3.  
Power (µW) = CEQ * VCC2 * F  
EQ 3  
Where:  
CEQ is the equivalent capacitance expressed in pF.  
VCC is the power supply in volts.  
F is the switching frequency in MHz.  
Equivalent capacitance is calculated by measuring ICC active at a specified frequency and voltage for  
each circuit component of interest. Measurements have been made over a range of frequencies at a  
fixed value of VCC. Equivalent capacitance is frequency independent so that the results may be used  
over a wide range of operating conditions. Equivalent capacitance values are shown in Table 2-6.  
Table 2-6 • CEQ Values for Microsemi FPGAs  
Item  
CEQ Value  
5.8  
Modules (CEQM  
)
Input Buffers (CEQI  
Output Buffers (CEQO  
Routed Array Clock Buffer Loads (CEQCR  
)
12.9  
)
23.8  
)
3.9  
2-4  
Revision 8  
ACT 2 Family FPGAs  
To calculate the active power dissipated from the complete design, the switching frequency of each part  
of the logic must be known. EQ 4 shows a piece-wise linear summation over all components.  
Power =VCC2 * [(m * CEQM * fm)modules + (n * CEQI * fn) inputs  
+ (p * (CEQO+ CL) * fp)outputs  
+ 0.5 * (q1 * CEQCR * fq1 routed_Clk1  
)
+ (r1 * fq1 routed_Clk1  
)
+ 0.5 * (q2 * CEQCR * fq2 routed_Clk2  
)
+ (r2 * fq2 routed_Clk2  
)
EQ 4  
Where:  
m = Number of logic modules switching at fm  
n = Number of input buffers switching at fn  
p = Number of output buffers switching at fp  
q1 = Number of clock loads on the first routed array clock  
q2 = Number of clock loads on the second routed array clock  
r1 = Fixed capacitance due to first routed array clock  
r2 = Fixed capacitance due to second routed array clock  
CEQM = Equivalent capacitance of logic modules in pF  
CEQI = Equivalent capacitance of input buffers in pF  
CEQO = Equivalent capacitance of output buffers in pF  
CEQCR = Equivalent capacitance of routed array clock in pF  
CL = Output lead capacitance in pF  
m = Average logic module switching rate in MHz  
f
fn = Average input buffer switching rate in MHz  
fp = Average output buffer switching rate in MHz  
f
f
q1 = Average first routed array clock rate in MHz  
q2 = Average second routed array clock rate in MHz  
Table 2-7 • Fixed Capacitance Values for Microsemi FPGAs  
Device Type  
r1, routed_Clk1  
r2, routed_Clk2  
106.0  
A1225A  
106  
134  
168  
A1240A  
A1280A  
134.2  
167.8  
Revision 8  
2-5  
Detailed Specifications  
Determining Average Switching Frequency  
To determine the switching frequency for a design, you must have a detailed understanding of the data  
input values to the circuit. The following guidelines are meant to represent worst-case scenarios so that  
they can be generally used to predict the upper limits of power dissipation. These guidelines are given in  
Table 2-8.  
Table 2-8 • Guidelines for Predicting Power Dissipation  
Data  
Value  
80% of modules  
Logic Modules (m)  
Inputs switching (n)  
# inputs/4  
Outputs switching (p)  
# output/4  
First routed array clock loads (q1)  
Second routed array clock loads (q2)  
Load capacitance (CL)  
40% of sequential modules  
40% of sequential modules  
35 pF  
F/10  
F/5  
Average logic module switching rate (fm)  
Average input switching rate (fn)  
Average output switching rate (fp)  
F/10  
F
Average first routed array clock rate (fq1  
)
Average second routed array clock rate (fq2  
)
F/2  
2-6  
Revision 8  
ACT 2 Family FPGAs  
1
ACT 2 Timing Model  
Input Delays  
Internal Delays  
Predicted  
Routing  
Delays  
Output Delays  
Combinatorial  
Logic Module  
I/O Module  
I/O Module  
t
= 2.6 ns  
t
= 4.8 ns(2)  
INYL  
IRD2  
t
= 8.0 ns  
DLH  
t
t
t
t
= 1.4 ns  
= 1.7 ns  
= 3.1 ns  
= 4.7 ns  
RD1  
RD2  
RD4  
RD8  
D
G
Q
t
= 3.8 ns  
PD  
I/O Module  
t
= 8.0 ns  
DLH  
Sequential  
Logic Module  
t
= 2.0 ns  
= 4.0 ns  
= 4.7 ns  
INH  
t
t
INSU  
INGL  
D
D
G
Q
Q
Combin-  
atorial  
t
= 1.4 ns  
Logic  
t
= 7.1 ns  
RD1  
ENHZ  
Included  
in tSUD  
t
= 0.0 ns  
= 0.4 ns  
= 9.0 ns  
OUTH  
t
OUTSU  
t
= 3.8 ns  
t
= 0.4 ns  
= 0.0 ns  
CO  
SUD  
HD  
ARRAY  
t
GLH  
t
CLOCKS  
t
= 11.8 ns  
FO = 256  
CKH  
F
= 100 MHz  
MAX  
Notes:  
1. Values shown for A1240A-2 at worst-case commercial conditions.  
2. Input module predicted routing delay  
Figure 2-1 • Timing Model  
Revision 8  
2-7  
Detailed Specifications  
Parameter Measurement  
E
D
TRIBUFF  
To AC test loads (shown below)  
PAD  
VCC  
50%  
VCC  
VCC  
In  
GND  
1.5 V  
50%  
E
GND  
10%  
E
GND  
90%  
50%  
50%  
VCC  
50%  
VOH  
50%  
VOH  
1.5 V  
VOL  
PAD  
VOL  
PAD  
PAD  
GND  
1.5 V  
1.5 V  
t
t
t
t
t
t
ENHZ  
DHS,  
DHS  
ENZL  
ENLZ  
ENZH  
Figure 2-2 • Output Buffer Delays  
Load 2  
(Used to measure rising/falling edges)  
Load 1  
(Used to measure propagation delay)  
VCC  
GND  
To the output under test  
50 pF  
R to VCC for tPLZ / tPZL  
R to GND for tPHZ / tPZH  
R = 1 kΩ  
To the output under test  
50 pF  
Figure 2-3 • AC Test Loads  
Y
PAD  
INBUF  
3 V  
PAD  
0 V  
50%  
1.5 V  
VCC  
1.5 V  
Y
GND  
50%  
t
t
INYL  
INYH  
Figure 2-4 • Input Buffer Delays  
2-8  
Revision 8  
ACT 2 Family FPGAs  
S
A
B
Y
VCC  
GND  
S, A or B  
50% 50%  
VCC  
50%  
Y
50%  
GND  
t
t
PHL  
PLH  
VCC  
50%  
Y
GND  
50%  
t
t
PLH  
PHL  
Figure 2-5 • Module Delays  
Sequential Module Timing Characteristics  
Y
D
E
CLK  
CLR  
(Positive edge triggered)  
t
HD  
D*  
t
t
t
A
WCLKA  
SUD  
G, CLK  
tSUENA  
t
WCLKI  
tHENA  
E
t
CO  
Q
tRS  
PRE, CLR  
t
WASYN  
Note: D represents all data functions involving A, B, and S for multiplexed flip-flops.  
Figure 2-6 • Flip-Flops and Latches  
Revision 8  
2-9  
Detailed Specifications  
PAD  
G
DATA  
IBDL  
PAD  
CLK  
CLKBUF  
DATA  
G
t
INH  
t
INSU  
t
HEXT  
CLK  
t
SUEXT  
Figure 2-7 • Input Buffer Latches  
D
PAD  
OBDLHS  
G
D
G
tOUTSU  
tOUTH  
Figure 2-8 • Output Buffer Latches  
2-10  
Revision 8  
ACT 2 Family FPGAs  
Timing Derating Factor (Temperature and Voltage)  
Table 2-9 • Timing Derating Factor (Temperature and Voltage)  
(Commercial Minimum/Maximum Specification) x  
Industrial  
Military  
Min.  
0.69  
Max.  
Min.  
Max.  
1.23  
1.11  
0.67  
Table 2-10 • Timing Derating Factor for Designs at Typical Temperature (TJ = 25°C)  
and Voltage (5.0 V)  
(Commercial Maximum Specification) x  
0.85  
Table 2-11 • Temperature and Voltage Derating Factors  
(normalized to Worst-Case Commercial, TJ = 4.75 V, 70°C)  
–55  
0.75  
0.71  
0.69  
0.68  
0.67  
–40  
0.79  
0.75  
0.72  
0.69  
0.69  
0
25  
70  
85  
125  
1.23  
1.13  
1.13  
1.09  
1.08  
4.50  
4.75  
5.00  
5.25  
5.50  
0.86  
0.82  
0.80  
0.77  
0.76  
0.92  
0.87  
0.85  
0.82  
0.81  
1.06  
1.00  
0.97  
0.95  
0.93  
1.11  
1.05  
1.02  
0.98  
0.97  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
125˚C  
85˚C  
70˚C  
25˚C  
0˚C  
–40˚C  
–55˚C  
4.504.755.005.255.50  
Voltage (V)  
Note: This derating factor applies to all routing and propagation delays.  
Figure 2-9 • Junction Temperature and Voltage Derating Curves  
(normalized to Worst-Case Commercial, TJ = 4.75 V, 70°C)  
Revision 8  
2-11  
Detailed Specifications  
A1225A Timing Characteristics  
Table 2-12 • A1225A Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C  
Logic Module Propagation Delays1  
–2 Speed3  
–1 Speed  
Std. Speed  
Units  
Parameter/Description  
Min. Max. Min. Max.  
Min.  
Max.  
5.0  
tPD1  
tCO  
tGO  
tRS  
Single Module  
3.8  
3.8  
3.8  
3.8  
4.3  
4.3  
4.3  
4.3  
ns  
ns  
ns  
ns  
Sequential Clock to Q  
Latch G to Q  
5.0  
5.0  
Flip-Flop (Latch) Reset to Q  
5.0  
Predicted Routing Delays2  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
FO = 1 Routing Delay  
FO = 2 Routing Delay  
FO = 3 Routing Delay  
FO = 4 Routing Delay  
FO = 8 Routing Delay  
1.1  
1.7  
2.3  
2.8  
4.4  
1.2  
1.9  
2.6  
3.1  
4.9  
1.4  
2.2  
3.0  
3.7  
5.8  
ns  
ns  
ns  
ns  
ns  
Sequential Timing Characteristics3,4  
tSUD  
Flip-Flop (Latch) Data Input Setup  
Flip-Flop (Latch) Data Input Hold  
Flip-Flop (Latch) Enable Setup  
0.4  
0.0  
0.8  
0.0  
4.5  
0.4  
0.0  
0.9  
0.0  
5.0  
5.0  
11.0  
0.0  
0.4  
0.0  
0.4  
0.5  
0.0  
1.0  
0.0  
6.0  
6.0  
13.0  
0.0  
0.5  
0.0  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tHD  
tSUENA  
tHENA  
tWCLKA  
tWASYN  
tA  
Flip-Flop (Latch) Enable Hold  
Flip-Flop (Latch) Clock Active Pulse Width  
Flip-Flop (Latch) Clock Asynchronous Pulse Width 4.5  
Flip-Flop Clock Input Period  
Input Buffer Latch Hold  
9.4  
0.0  
0.4  
0.0  
0.4  
tINH  
tINSU  
tOUTH  
tOUTSU  
fMAX  
Input Buffer Latch Setup  
Output Buffer Latch Hold  
Output Buffer Latch Setup  
Flip-Flop (Latch) Clock Frequency  
105.0  
90.0  
75.0 MHz  
Notes:  
1. For dual-module macros, use t  
+ t  
+ t  
, t + t  
+ t  
, or t  
+ t  
+ t  
—whichever is appropriate.  
PD1  
RD1  
PDn CO  
RD1  
PDn  
PD1  
RD1  
SUD  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for  
estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case  
performance. Post-route timing is based on actual routing delay measurements performed on the device prior to  
shipment.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules  
can be obtained from the DirectTime Analyzer utility.  
4. Setup and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External  
setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external  
PAD signal to the G input subtracts (adds) to the internal setup (hold) time.  
2-12  
Revision 8  
ACT 2 Family FPGAs  
A1225A Timing Characteristics (continued)  
Table 2-13 • A1225A Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C  
Units  
I/O Module Input Propagation Delays  
Parameter/Description  
–2 Speed  
–1 Speed  
Std. Speed  
Min. Max. Min. Max. Min.  
Max.  
3.8  
tINYH  
tINYL  
tINGH  
tINGL  
Pad to Y High  
Pad to Y Low  
G to Y High  
G to Y Low  
2.9  
2.6  
5.0  
4.7  
3.3  
3.0  
5.7  
5.4  
ns  
ns  
ns  
ns  
3.5  
6.6  
6.3  
Input Module Predicted Input Routing Delays*  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
FO = 1 Routing Delay  
FO = 2 Routing Delay  
FO = 3 Routing Delay  
FO = 4 Routing Delay  
FO = 8 Routing Delay  
4.1  
4.6  
5.3  
5.7  
7.4  
4.6  
5.2  
6.0  
6.4  
8.3  
5.4  
6.1  
7.1  
7.6  
9.8  
ns  
ns  
ns  
ns  
ns  
Global Clock Network  
tCKH Input Low to High  
FO = 32  
FO = 256  
FO = 32  
FO = 256  
FO = 32  
FO = 256  
FO = 32  
FO = 256  
FO = 32  
FO = 256  
FO = 32  
FO = 256  
FO = 32  
FO = 256  
FO = 32  
FO = 256  
FO = 32  
FO = 256  
10.2  
11.8  
10.2  
12.0  
11.0  
13.0  
11.0  
13.2  
12.8  
15.7  
12.8  
15.9  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCKL  
Input High to Low  
tPWH  
tPWL  
tCKSW  
tSUEXT  
tHEXT  
tP  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
3.4  
3.8  
3.4  
3.8  
4.1  
4.5  
4.1  
4.5  
4.5  
5.0  
4.5  
5.0  
0.7  
3.5  
0.7  
3.5  
0.7  
3.5  
Input Latch External Setup  
Input Latch External Hold  
Minimum Period  
0.0  
0.0  
7.0  
11.2  
7.7  
8.1  
0.0  
0.0  
7.0  
11.2  
8.3  
8.8  
0.0  
0.0  
7.0  
11.2  
9.1  
10.0  
fMAX  
Maximum Frequency  
130.0  
125.0  
120.0  
115.0  
110.0  
100.0  
Note: *These parameters should be used for estimating device performance. Optimization techniques may further  
reduce delays by 0 to 4 ns. Routing delays are for typical designs across worst-case operating conditions. Post-  
route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is  
based on actual routing delay measurements performed on the device prior to shipment.  
Revision 8  
2-13  
Detailed Specifications  
A1225A Timing Characteristics (continued)  
Table 2-14 • A1225A Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C  
TTL Output Module Timing1  
–2 Speed  
–1 Speed  
Std. Speed  
Units  
Parameter/Description  
Min. Max. Min. Max. Min.  
Max.  
10.6  
13.4  
11.8  
15.5  
9.4  
tDLH  
Data to Pad High  
Data to Pad Low  
Enable Pad Z to High  
Enable Pad Z to Low  
Enable Pad High to Z  
Enable Pad Low to Z  
G to Pad High  
8.0  
10.1  
8.9  
9.0  
11.4  
10.0  
13.2  
8.0  
ns  
ns  
tDHL  
tENZH  
tENZL  
tENHZ  
tENLZ  
tGLH  
ns  
11.6  
7.1  
ns  
ns  
8.3  
9.5  
11.1  
11.9  
14.9  
0.09  
0.16  
ns  
8.9  
10.2  
12.7  
0.08  
0.13  
ns  
tGHL  
G to Pad Low  
11.2  
0.07  
0.12  
ns  
dTLH  
Delta Low to High  
Delta High to Low  
ns/pF  
ns/pF  
dTHL  
CMOS Output Module Timing1  
tDLH  
Data to Pad High  
Data to Pad Low  
Enable Pad Z to High  
Enable Pad Z to Low  
Enable Pad High to Z  
Enable Pad Low to Z  
G to Pad High  
10.1  
8.4  
11.5  
9.6  
13.5  
11.2  
11.8  
15.5  
9.4  
ns  
ns  
tDHL  
tENZH  
tENZL  
tENHZ  
tENLZ  
tGLH  
8.9  
10.0  
13.2  
8.0  
ns  
11.6  
7.1  
ns  
ns  
8.3  
9.5  
11.1  
11.9  
14.9  
0.16  
0.12  
ns  
8.9  
10.2  
12.7  
0.13  
0.10  
ns  
tGHL  
G to Pad Low  
11.2  
0.12  
0.09  
ns  
dTLH  
dTHL  
Notes:  
Delta Low to High  
Delta High to Low  
ns/pF  
ns/pF  
1. Delays based on 50 pF loading.  
2. SSO information can be found at www.microsemi.com/soc/techdocs/appnotes/board_consideration.aspx.  
2-14  
Revision 8  
ACT 2 Family FPGAs  
A1240A Timing Characteristics  
Table 2-15 • A1240A Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C  
Logic Module Propagation Delays1  
–2 Speed3  
–1 Speed  
Std. Speed  
Units  
Parameter/Description  
Min. Max. Min. Max.  
Min.  
Max.  
5.0  
tPD1  
tCO  
tGO  
tRS  
Single Module  
3.8  
3.8  
3.8  
3.8  
4.3  
4.3  
4.3  
4.3  
ns  
ns  
ns  
ns  
Sequential Clock to Q  
Latch G to Q  
5.0  
5.0  
Flip-Flop (Latch) Reset to Q  
5.0  
Predicted Routing Delays2  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
FO = 1 Routing Delay  
FO = 2 Routing Delay  
FO = 3 Routing Delay  
FO = 4 Routing Delay  
FO = 8 Routing Delay  
1.4  
1.7  
2.3  
3.1  
4.7  
1.5  
2.0  
2.6  
3.5  
5.4  
1.8  
2.3  
3.0  
4.1  
6.3  
ns  
ns  
ns  
ns  
ns  
Sequential Timing Characteristics3,4  
tSUD  
Flip-Flop (Latch) Data Input Setup  
Flip-Flop (Latch) Data Input Hold  
Flip-Flop (Latch) Enable Setup  
0.4  
0.0  
0.8  
0.0  
4.5  
0.4  
0.0  
0.9  
0.0  
6.0  
6.0  
12.0  
0.0  
0.4  
0.0  
0.4  
0.5  
0.0  
1.0  
0.0  
6.5  
6.5  
15.0  
0.0  
0.5  
0.0  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tHD  
tSUENA  
tHENA  
tWCLKA  
tWASYN  
tA  
Flip-Flop (Latch) Enable Hold  
Flip-Flop (Latch) Clock Active Pulse Width  
Flip-Flop (Latch) Clock Asynchronous Pulse Width 4.5  
Flip-Flop Clock Input Period  
Input Buffer Latch Hold  
9.8  
0.0  
0.4  
0.0  
0.4  
tINH  
tINSU  
tOUTH  
tOUTSU  
fMAX  
Input Buffer Latch Setup  
Output Buffer Latch Hold  
Output Buffer Latch Setup  
Flip-Flop (Latch) Clock Frequency  
100.0  
80.0  
66.0 MHz  
Notes:  
1. For dual-module macros, use t  
+ t  
+ t  
, t + t  
+ t  
, or t  
+ t  
+ t  
—whichever is appropriate.  
PD1  
RD1  
PDn CO  
RD1  
PDn  
PD1  
RD1  
SUD  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for  
estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case  
performance. Post-route timing is based on actual routing delay measurements performed on the device prior to  
shipment.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules  
can be obtained from the DirectTime Analyzer utility.  
4. Setup and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External  
setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external  
PAD signal to the G input subtracts (adds) to the internal setup (hold) time.  
Revision 8  
2-15  
Detailed Specifications  
A1240A Timing Characteristics (continued)  
Table 2-16 • A1240A Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C  
Units  
I/O Module Input Propagation Delays  
Parameter/Description  
–2 Speed  
–1 Speed  
Std. Speed  
Min. Max. Min. Max. Min.  
Max.  
3.8  
tINYH  
tINYL  
tINGH  
tINGL  
Pad to Y High  
Pad to Y Low  
G to Y High  
G to Y Low  
2.9  
2.6  
5.0  
4.7  
3.3  
3.0  
5.7  
5.4  
ns  
ns  
ns  
ns  
3.5  
6.6  
6.3  
Input Module Predicted Input Routing Delays*  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
FO = 1 Routing Delay  
FO = 2 Routing Delay  
FO = 3 Routing Delay  
FO = 4 Routing Delay  
FO = 8 Routing Delay  
4.2  
4.8  
5.4  
5.9  
7.9  
4.8  
5.4  
6.1  
6.7  
8.9  
5.6  
6.4  
ns  
ns  
ns  
ns  
ns  
7.2  
7.9  
10.5  
Global Clock Network  
tCKH Input Low to High  
FO = 32  
FO = 256  
FO = 32  
FO = 256  
FO = 32  
FO = 256  
FO = 32  
FO = 256  
FO = 32  
FO = 256  
FO = 32  
FO = 256  
FO = 32  
FO = 256  
FO = 32  
FO = 256  
FO = 32  
FO = 256  
10.2  
11.8  
10.2  
12.0  
11.0  
13.0  
11.0  
13.2  
12.8  
15.7  
12.8  
15.9  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCKL  
Input High to Low  
tPWH  
tPWL  
tCKSW  
tSUEXT  
tHEXT  
tP  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
3.8  
4.1  
3.8  
4.1  
4.5  
5.0  
4.5  
5.0  
5.5  
5.8  
5.5  
5.8  
0.5  
2.5  
0.5  
2.5  
0.5  
2.5  
Input Latch External Setup  
Input Latch External Hold  
Minimum Period  
0.0  
0.0  
7.0  
11.2  
8.1  
8.8  
0.0  
0.0  
0.0  
0.0  
7.0  
7.0  
11.2  
9.1  
11.2  
11.1  
11.7  
10.0  
fMAX  
Maximum Frequency  
125.0  
115.0  
110.0  
100.0  
90.0  
85.0  
Note: *These parameters should be used for estimating device performance. Optimization techniques may further  
reduce delays by 0 to 4 ns. Routing delays are for typical designs across worst-case operating conditions. Post-  
route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is  
based on actual routing delay measurements performed on the device prior to shipment.  
2-16  
Revision 8  
ACT 2 Family FPGAs  
A1240A Timing Characteristics (continued)  
Table 2-17 • A1240A Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C  
TTL Output Module Timing1  
–2 Speed  
–1 Speed  
Std. Speed  
Units  
Parameter/Description  
Min. Max. Min. Max. Min.  
Max.  
10.6  
13.4  
11.8  
15.5  
9.4  
tDLH  
Data to Pad High  
Data to Pad Low  
Enable Pad Z to High  
Enable Pad Z to Low  
Enable Pad High to Z  
Enable Pad Low to Z  
G to Pad High  
8.0  
10.1  
8.9  
9.0  
11.4  
10.0  
13.2  
8.0  
ns  
ns  
tDHL  
tENZH  
tENZL  
tENHZ  
tENLZ  
tGLH  
ns  
11.7  
7.1  
ns  
ns  
8.4  
9.5  
11.1  
11.9  
14.9  
0.09  
0.16  
ns  
9.0  
10.2  
12.7  
0.08  
0.13  
ns  
tGHL  
G to Pad Low  
11.2  
0.07  
0.12  
ns  
dTLH  
Delta Low to High  
Delta High to Low  
ns/pF  
ns/pF  
dTHL  
CMOS Output Module Timing1  
tDLH  
Data to Pad High  
Data to Pad Low  
Enable Pad Z to High  
Enable Pad Z to Low  
Enable Pad High to Z  
Enable Pad Low to Z  
G to Pad High  
10.2  
8.4  
11.5  
9.6  
13.5  
11.2  
11.8  
15.5  
9.4  
ns  
ns  
tDHL  
tENZH  
tENZL  
tENHZ  
tENLZ  
tGLH  
8.9  
10.0  
13.2  
8.0  
ns  
11.7  
7.1  
ns  
ns  
8.4  
9.5  
11.1  
11.9  
14.9  
0.16  
0.12  
ns  
9.0  
10.2  
12.7  
0.13  
0.10  
ns  
tGHL  
G to Pad Low  
11.2  
0.12  
0.09  
ns  
dTLH  
dTHL  
Notes:  
Delta Low to High  
Delta High to Low  
ns/pF  
ns/pF  
1. Delays based on 50 pF loading.  
2. SSO information can be found at www.microsemi.com/soc/techdocs/appnotes/board_consideration.aspx.  
Revision 8  
2-17  
Detailed Specifications  
A1280A Timing Characteristics  
Table 2-18 • A1280A Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C  
Logic Module Propagation Delays1  
–2 Speed3  
–1 Speed  
Std. Speed  
Units  
Parameter/Description  
Min. Max. Min. Max.  
Min.  
Max.  
5.0  
tPD1  
tCO  
tGO  
tRS  
Single Module  
3.8  
3.8  
3.8  
3.8  
4.3  
4.3  
4.3  
4.3  
ns  
ns  
ns  
ns  
Sequential Clock to Q  
Latch G to Q  
5.0  
5.0  
Flip-Flop (Latch) Reset to Q  
5.0  
Predicted Routing Delays2  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
FO = 1 Routing Delay  
FO = 2 Routing Delay  
FO = 3 Routing Delay  
FO = 4 Routing Delay  
FO = 8 Routing Delay  
1.7  
2.5  
3.0  
3.7  
6.7  
2.0  
2.8  
3.4  
4.2  
7.5  
2.3  
3.3  
4.0  
4.9  
8.8  
ns  
ns  
ns  
ns  
ns  
Sequential Timing Characteristics3,4  
tSUD  
Flip-Flop (Latch) Data Input Setup  
Flip-Flop (Latch) Data Input Hold  
Flip-Flop (Latch) Enable Setup  
0.4  
0.0  
0.8  
0.0  
5.5  
0.4  
0.0  
0.9  
0.0  
6.0  
6.0  
13.3  
0.0  
0.4  
0.0  
0.4  
0.5  
0.0  
1.0  
0.0  
7.0  
7.0  
18.0  
0.0  
0.5  
0.0  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tHD  
tSUENA  
tHENA  
tWCLKA  
tWASYN  
tA  
Flip-Flop (Latch) Enable Hold  
Flip-Flop (Latch) Clock Active Pulse Width  
Flip-Flop (Latch) Clock Asynchronous Pulse Width 5.5  
Flip-Flop Clock Input Period  
Input Buffer Latch Hold  
11.7  
0.0  
0.4  
0.0  
0.4  
tINH  
tINSU  
tOUTH  
tOUTSU  
fMAX  
Input Buffer Latch Setup  
Output Buffer Latch Hold  
Output Buffer Latch Setup  
Flip-Flop (Latch) Clock Frequency  
85.0  
75.0  
50.0 MHz  
Notes:  
1. For dual-module macros, use t  
+ t  
+ t  
, t + t  
+ t  
, or t  
+ t  
+ t  
—whichever is appropriate.  
PD1  
RD1  
PDn CO  
RD1  
PDn  
PD1  
RD1  
SUD  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for  
estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case  
performance. Post-route timing is based on actual routing delay measurements performed on the device prior to  
shipment.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules  
can be obtained from the DirectTime Analyzer utility.  
4. Setup and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External  
setup/hold timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external  
PAD signal to the G input subtracts (adds) to the internal setup (hold) time.  
2-18  
Revision 8  
ACT 2 Family FPGAs  
A1280A Timing Characteristics (continued)  
Table 2-19 • A1280A Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C  
Units  
I/O Module Input Propagation Delays  
Parameter/Description  
–2 Speed  
–1 Speed  
Std. Speed  
Min. Max. Min. Max. Min.  
Max.  
3.8  
tINYH  
tINYL  
tINGH  
tINGL  
Pad to Y High  
Pad to Y Low  
G to Y High  
G to Y Low  
2.9  
2.7  
5.0  
4.8  
3.3  
3.0  
5.7  
5.4  
ns  
ns  
ns  
ns  
3.5  
6.6  
6.3  
Input Module Predicted Input Routing Delays*  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
FO = 1 Routing Delay  
FO = 2 Routing Delay  
FO = 3 Routing Delay  
FO = 4 Routing Delay  
FO = 8 Routing Delay  
4.6  
5.2  
5.6  
6.5  
9.4  
5.1  
5.9  
6.0  
6.9  
ns  
ns  
ns  
ns  
ns  
6.3  
7.4  
7.3  
8.6  
10.5  
12.4  
Global Clock Network  
tCKH Input Low to High  
FO = 32  
FO = 256  
FO = 32  
FO = 256  
FO = 32  
FO = 256  
FO = 32  
FO = 256  
FO = 32  
FO = 256  
FO = 32  
FO = 256  
FO = 32  
FO = 256  
FO = 32  
FO = 256  
FO = 32  
FO = 256  
10.2  
13.1  
10.2  
13.3  
11.0  
14.6  
11.0  
14.9  
12.8  
17.2  
12.8  
17.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCKL  
Input High to Low  
tPWH  
tPWL  
tCKSW  
tSUEXT  
tHEXT  
tP  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
5.0  
5.8  
5.0  
5.8  
5.5  
6.4  
5.5  
6.4  
6.6  
7.6  
6.6  
7.6  
0.5  
2.5  
0.5  
2.5  
0.5  
2.5  
Input Latch External Setup  
Input Latch External Hold  
Minimum Period  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
7.0  
7.0  
7.0  
11.2  
9.6  
11.2  
11.2  
12.6  
11.2  
13.3  
15.3  
10.6  
fMAX  
Maximum Frequency  
105.0  
95.0  
90.0  
80.0  
75.0  
65.0  
Note: *These parameters should be used for estimating device performance. Optimization techniques may further  
reduce delays by 0 to 4 ns. Routing delays are for typical designs across worst-case operating conditions. Post-  
route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is  
based on actual routing delay measurements performed on the device prior to shipment.  
A1280A Timing Characteristics (continued)  
Revision 8  
2-19  
Detailed Specifications  
Table 2-20 • A1280A Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C  
TTL Output Module Timing1  
–2 Speed  
–1 Speed  
Std. Speed  
Units  
Parameter/Description  
Min. Max. Min. Max. Min.  
Max.  
10.6  
13.4  
11.8  
15.5  
9.4  
tDLH  
Data to Pad High  
Data to Pad Low  
Enable Pad Z to High  
Enable Pad Z to Low  
Enable Pad High to Z  
Enable Pad Low to Z  
G to Pad High  
8.1  
10.2  
9.0  
9.0  
11.4  
10.0  
13.2  
8.0  
ns  
ns  
tDHL  
tENZH  
tENZL  
tENHZ  
tENLZ  
tGLH  
ns  
11.8  
7.1  
ns  
ns  
8.4  
9.5  
11.1  
11.9  
14.9  
0.09  
0.16  
ns  
9.0  
10.2  
12.7  
0.08  
0.13  
ns  
tGHL  
G to Pad Low  
11.3  
0.07  
0.12  
ns  
dTLH  
Delta Low to High  
Delta High to Low  
ns/pF  
ns/pF  
dTHL  
CMOS Output Module Timing1  
tDLH  
Data to Pad High  
Data to Pad Low  
Enable Pad Z to High  
Enable Pad Z to Low  
Enable Pad High to Z  
Enable Pad Low to Z  
G to Pad High  
10.3  
8.5  
11.5  
9.6  
13.5  
11.2  
11.8  
15.5  
9.4  
ns  
ns  
tDHL  
tENZH  
tENZL  
tENHZ  
tENLZ  
tGLH  
9.0  
10.0  
13.2  
8.0  
ns  
11.8  
7.1  
ns  
ns  
8.4  
9.5  
11.1  
11.9  
14.9  
0.16  
0.12  
ns  
9.0  
10.2  
12.7  
0.13  
0.10  
ns  
tGHL  
G to Pad Low  
11.3  
0.12  
0.09  
ns  
dTLH  
dTHL  
Notes:  
Delta Low to High  
Delta High to Low  
ns/pF  
ns/pF  
1. Delays based on 50 pF loading.  
2. SSO information can be found at www.microsemi.com/soc/techdocs/appnotes/board_consideration.aspx.  
2-20  
Revision 8  
ACT 2 Family FPGAs  
Pin Descriptions  
CLKA  
Clock A (Input)  
TTL Clock input for clock distribution networks. The Clock input is buffered prior to clocking the logic  
modules. This pin can also be used as an I/O.  
CLKB  
Clock B (Input)  
TTL Clock input for clock distribution networks. The Clock input is buffered prior to clocking the logic  
modules. This pin can also be used as an I/O.  
DCLK  
Diagnostic Clock (Input)  
TTL Clock input for diagnostic probe and device programming. DCLK is active when the MODE pin is  
High. This pin functions as an I/O when the MODE pin is Low.  
GND  
Ground  
Low supply voltage.  
I/O  
Input/Output (Input, Output)  
The I/O pin functions as an input, output, three-state, or bidirectional buffer. Input and output levels are  
compatible with standard TTL and CMOS specifications. Unused I/O pins are automatically driven Low  
by the ALS software.  
MODE  
Mode (Input)  
The MODE pin controls the use of multifunction pins (DCLK, PRA, PRB, SDI). When the MODE pin is  
High, the special functions are active. When the MODE pin is Low, the pins function as I/Os. To provide  
Actionprobe capability, the MODE pin should be terminated to GND through a 10K resistor so that the  
MODE pin can be pulled High when required.  
NC  
No Connection  
This pin is not connected to circuitry within the device.  
PRA Probe A (Output)  
The Probe A pin is used to output data from any user-defined design node within the device. This  
independent diagnostic pin can be used in conjunction with the Probe B pin to allow real-time diagnostic  
output of any signal path within the device. The Probe A pin can be used as a user-defined I/O when  
debugging has been completed. The pin’s probe capabilities can be permanently disabled to protect  
programmed design confidentiality. PRA is active when the MODE pin is High. This pin functions as an  
I/O when the MODE pin is Low.  
PRB  
Probe B (Output)  
The Probe B pin is used to output data from any user-defined design node within the device. This  
independent diagnostic pin can be used in conjunction with the Probe A pin to allow real-time diagnostic  
output of any signal path within the device. The Probe B pin can be used as a user-defined I/O when  
debugging has been completed. The pin’s probe capabilities can be permanently disabled to protect  
programmed design confidentiality. PRB is active when the MODE pin is High. This pin functions as an  
I/O when the MODE pin is Low.  
SDI  
Serial Data Input (Input)  
Serial data input for diagnostic probe and device programming. SDI is active when the MODE pin is High.  
This pin functions as an I/O when the MODE pin is Low.  
SDO  
Serial Data Output (Output)  
Serial data output for diagnostic probe. SDO is active when the MODE pin is High. This pin functions as  
an I/O when the MODE pin is Low.  
VCC  
5.0 V Supply Voltage  
High supply voltage.  
Revision 8  
2-21  
3 – Package Pin Assignments  
PL84  
11 10  
9
8
7
6
5
4
3
2
1
84 83 82 81 80 79 78 77 76 75  
12  
74  
13  
14  
73  
72  
15  
16  
17  
18  
71  
70  
69  
68  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
84-Pin  
PLCC  
29  
30  
31  
32  
57  
56  
55  
54  
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/docs.aspx.  
Revision 8  
3-1  
Package Pin Assignments  
PL84  
A1240A Function  
Pin Number  
A1225A Function  
A1280A Function  
CLKB, I/O  
PRB, I/O  
GND  
2
CLKB, I/O  
PRB, I/O  
GND  
CLKB, I/O  
PRB, I/O  
GND  
4
6
10  
12  
22  
23  
28  
43  
49  
52  
63  
64  
65  
70  
76  
81  
83  
84  
DCLK, I/O  
MODE  
VCC  
DCLK, I/O  
MODE  
VCC  
DCLK, I/O  
MODE  
VCC  
VCC  
VCC  
VCC  
GND  
GND  
GND  
VCC  
VCC  
VCC  
GND  
GND  
GND  
SDO  
SDO  
SDO  
GND  
GND  
GND  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
GND  
GND  
GND  
SDI, I/O  
PRA, I/O  
CLKA, I/O  
VCC  
SDI, I/O  
PRA, I/O  
CLKA, I/O  
VCC  
SDI, I/O  
PRA, I/O  
CLKA, I/O  
VCC  
Notes:  
1. All unlisted pin numbers are user I/Os.  
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can  
be terminated directly to GND.  
3-2  
Revision 8  
ACT 2 Family FPGAs  
PQ100  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
100-Pin  
PQFP  
100  
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/docs.aspx  
Revision 8  
3-3  
Package Pin Assignments  
PQ100  
PQ100  
A1225A Function  
Pin Number  
A1225A Function  
DCLK, I/O  
MODE  
GND  
Pin Number  
2
65  
66  
67  
72  
79  
84  
87  
89  
90  
92  
94  
96  
VCC  
VCC  
4
9
VCC  
16  
17  
22  
34  
40  
46  
52  
57  
64  
VCC  
GND  
VCC  
SDI, I/O  
GND  
GND  
GND  
PRA, I/O  
CLKA, I/O  
VCC  
VCC  
GND  
SDO  
CLKB, I/O  
PRB, I/O  
GND  
GND  
GND  
Notes:  
1. All unlisted pin numbers are user I/Os.  
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can  
be terminated directly to GND.  
3-4  
Revision 8  
ACT 2 Family FPGAs  
PQ144  
1
144  
144-Pin  
PQFP  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/docs.aspx  
Revision 8  
3-5  
Package Pin Assignments  
PQ144  
PQ144  
Pin Number  
A1240A Function  
MODE  
GND  
Pin Number  
89  
A1240A Function  
VCC  
2
9
90  
VCC  
10  
11  
18  
19  
20  
21  
28  
29  
30  
44  
45  
46  
54  
55  
56  
64  
65  
71  
79  
80  
81  
88  
GND  
91  
VCC  
GND  
92  
VCC  
VCC  
93  
VCC  
VCC  
100  
101  
102  
110  
116  
117  
118  
123  
125  
126  
127  
128  
130  
132  
136  
137  
138  
144  
GND  
VCC  
GND  
VCC  
GND  
GND  
SDI, I/O  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
PRA, I/O  
CLKA, I/O  
VCC  
GND  
VCC  
VCC  
VCC  
VCC  
VCC  
GND  
CLKB, I/O  
PRB, I/O  
GND  
GND  
SDO  
GND  
GND  
GND  
GND  
GND  
DCLK, I/O  
GND  
Notes:  
1. All unlisted pin numbers are user I/Os.  
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can  
be terminated directly to GND.  
3-6  
Revision 8  
ACT 2 Family FPGAs  
PQ160  
1
2
3
4
5
6
7
8
9
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
160-Pin  
PQFP  
82  
81  
Note: This is the top view of the package  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/docs.aspx  
Revision 8  
3-7  
Package Pin Assignments  
PQ160  
PQ160  
A1280A Function  
Pin Number  
A1280A Function  
DCLK, I/O  
VCC  
Pin Number  
69  
2
GND  
GND  
SDO  
VCC  
GN  
6
80  
11  
16  
18  
20  
21  
23  
30  
35  
38  
40  
44  
49  
54  
57  
58  
59  
60  
61  
64  
GND  
82  
PRB, I/O  
CLKB, I/O  
VCC  
86  
89  
98  
GND  
GND  
GND  
VCC  
GND  
GND  
GND  
VCC  
VCC  
VCC  
GND  
GND  
VCC  
GND  
MODE  
GND  
CLKA, I/O  
PRA, I/O  
GND  
99  
109  
114  
120  
125  
130  
135  
138  
139  
140  
145  
150  
155  
159  
160  
VCC  
SDI, I/O  
GND  
GND  
GND  
VCC  
VCC  
VCC  
GND  
VCC  
GND  
GND  
Notes:  
1. All unlisted pin numbers are user I/Os.  
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can  
be terminated directly to GND.  
3-8  
Revision 8  
ACT 2 Family FPGAs  
VQ100  
1
75  
2
3
74  
73  
4
5
6
7
72  
71  
70  
69  
8
9
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
10  
11  
12  
13  
14  
15  
16  
17  
100-Pin  
VQFP  
18  
19  
20  
21  
58  
57  
56  
55  
22  
23  
24  
25  
54  
53  
52  
51  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/docs.aspx  
Revision 8  
3-9  
Package Pin Assignments  
VQ100  
VQ100  
Pin Number  
A1225A Function  
MODE  
GND  
Pin Number  
A1225A Function  
VCC  
2
64  
65  
70  
77  
82  
85  
87  
88  
90  
92  
94  
100  
7
VCC  
14  
15  
20  
32  
38  
44  
50  
55  
62  
63  
VCC  
GND  
VCC  
SDI, I/O  
GND  
GND  
GND  
PRA, I/O  
CLKA, I/O  
VCC  
VCC  
GND  
SDO  
CLKB, I/O  
PRB, I/O  
GND  
GND  
GND  
VCC  
DCLK, I/O  
Notes:  
1. All unlisted pin numbers are user I/Os.  
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can  
be terminated directly to GND.  
3-10  
Revision 8  
ACT 2 Family FPGAs  
TQ176  
1
2
3
4
5
6
7
8
9
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
176-Pin  
TQFP  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/docs.aspx  
Revision 8  
3-11  
Package Pin Assignments  
TQ176  
Pin Number A1240A Function A1280A Function  
TQ176  
Pin Number A1240A Function A1280A Function  
1
GND  
MODE  
NC  
GND  
MODE  
NC  
82  
NC  
NC  
VCC  
I/O  
2
86  
8
87  
SDO  
GND  
NC  
SDO  
GND  
I/O  
10  
11  
13  
18  
19  
20  
22  
23  
24  
25  
26  
27  
28  
29  
33  
37  
38  
45  
52  
54  
55  
57  
61  
64  
66  
67  
68  
74  
77  
78  
80  
NC  
I/O  
89  
NC  
I/O  
96  
NC  
VCC  
GND  
I/O  
97  
NC  
I/O  
GND  
NC  
101  
103  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
121  
124  
125  
126  
133  
135  
136  
140  
143  
144  
145  
147  
151  
152  
154  
NC  
NC  
NC  
I/O  
NC  
I/O  
GND  
NC  
GND  
I/O  
NC  
I/O  
GND  
NC  
GND  
VCC  
VCC  
I/O  
NC  
I/O  
GND  
VCC  
GND  
VCC  
VCC  
NC  
GND  
VCC  
GND  
VCC  
VCC  
I/O  
VCC  
NC  
NC  
I/O  
VCC  
NC  
VCC  
I/O  
NC  
NC  
NC  
I/O  
NC  
I/O  
NC  
VCC  
NC  
NC  
NC  
NC  
GND  
NC  
GND  
VCC  
I/O  
NC  
I/O  
NC  
I/O  
NC  
NC  
NC  
NC  
I/O  
GND  
SDI, I/O  
NC  
GND  
SDI, I/O  
I/O  
NC  
NC  
NC  
I/O  
NC  
I/O  
NC  
VCC  
I/O  
NC  
I/O  
NC  
GND  
VCC  
NC  
GND  
VCC  
I/O  
NC  
I/O  
NC  
NC  
NC  
I/O  
NC  
NC  
NC  
I/O  
NC  
I/O  
PRA, I/O  
CLKA, I/O  
PRA, I/O  
CLKA, I/O  
NC  
I/O  
3-12  
Revision 8  
ACT 2 Family FPGAs  
TQ176  
Pin Number A1240A Function A1280A Function  
155  
156  
158  
160  
161  
165  
166  
168  
170  
173  
175  
VCC  
GND  
VCC  
GND  
CLKB, I/O  
PRB, I/O  
NC  
CLKB, I/O  
PRB, I/O  
I/O  
NC  
NC  
NC  
I/O  
NC  
I/O  
NC  
VCC  
NC  
I/O  
DCLK, I/O  
DCLK, I/O  
Notes:  
1. NC denotes no connection.  
2. All unlisted pin numbers are user I/Os.  
3. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can  
be terminated directly to GND.  
Revision 8  
3-13  
Package Pin Assignments  
CQ172  
172  
Pin #1  
Index  
1
172-Pin  
CQFP  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/docs.aspx  
3-14  
Revision 8  
ACT 2 Family FPGAs  
CQ172  
A1280A Function  
CQ172  
A1280A Function  
Pin Number  
Pin Number  
107  
1
7
MODE  
GND  
VCC  
GND  
GND  
VCC  
VCC  
VCC  
GND  
GND  
VCC  
GND  
GND  
VCC  
GND  
VCC  
SDO  
GND  
GND  
GND  
VCC  
GND  
108  
12  
17  
22  
23  
24  
27  
32  
37  
50  
55  
65  
66  
75  
80  
85  
98  
103  
106  
109  
VCC  
110  
VCC  
113  
VCC  
118  
GND  
123  
GND  
131  
SDI, I/O  
VCC  
136  
141  
GND  
148  
PRA, I/O  
CLKA, I/O  
VCC  
150  
151  
152  
GND  
154  
CLKB, I/O  
PRB, I/O  
GND  
156  
161  
166  
VCC  
171  
DCLK, I/O  
Notes:  
1. All unlisted pin numbers are user I/Os.  
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can  
be terminated directly to GND.  
Revision 8  
3-15  
Package Pin Assignments  
PG100  
1
2
3
4
5
6
7
8
9
10 11  
A
B
C
D
E
F
A
B
C
D
E
F
G
H
J
100-Pin  
CPGA  
G
H
J
K
L
K
L
1
2
3
4
5
6
7
8
9
10 11  
Orientation Pin  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/docs.aspx  
3-16  
Revision 8  
ACT 2 Family FPGAs  
PG100  
PG100  
Pin Number  
A1225A Function  
PRB, I/O  
PRA, I/O  
VCC  
Pin Number  
A1225A Function  
VCC  
A4  
A7  
B6  
C2  
C3  
C5  
C6  
C7  
C8  
D6  
D10  
E3  
E11  
F3  
VCC  
F9  
VCC  
MODE  
F10  
F11  
G1  
G3  
G9  
J5  
VCC  
DCLK, I/O  
GND  
GND  
VCC  
CLKA, I/O  
GND  
GND  
GND  
SDI, I/O  
CLKB, I/O  
GND  
GND  
J7  
GND  
J9  
SDO  
GND  
K6  
VCC  
Notes:  
1. All unlisted pin numbers are user I/Os.  
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can  
be terminated directly to GND.  
Revision 8  
3-17  
Package Pin Assignments  
PG132  
1
2
3
4
5
6
7
8
9
10 11 12 13  
A
B
C
D
E
F
A
B
C
D
E
F
132-Pin  
CPGA  
G
H
J
G
H
J
K
L
K
L
M
N
M
N
1
2
3
4
5
6
7
8
9
10 11 12 13  
Orientation Pin  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/docs.aspx  
3-18  
Revision 8  
ACT 2 Family FPGAs  
PG132  
A1240A Function  
PG132  
A1240A Function  
Pin Number  
A1  
Pin Number  
G3  
MODE  
GND  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
GND  
GND  
GND  
GND  
VCC  
GND  
GND  
VCC  
GND  
GND  
SDO  
B5  
G4  
B6  
CLKB, I/O  
CLKA, I/O  
PRA, I/O  
GND  
G10  
G11  
G12  
G13  
H13  
J2  
B7  
B8  
B9  
B12  
C3  
SDI, I/O  
DCLK, I/O  
GND  
C5  
J3  
C6  
PRB, I/O  
VCC  
J11  
C7  
K7  
C9  
GND  
K12  
L5  
D7  
VCC  
E3  
GND  
L7  
E11  
E12  
F4  
GND  
L9  
GND  
M9  
GND  
N12  
G2  
VCC  
Notes:  
1. All unlisted pin numbers are user I/Os.  
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can  
be terminated directly to GND.  
Revision 8  
3-19  
Package Pin Assignments  
PG176  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
A
B
C
D
E
F
A
B
C
D
E
F
G
H
J
G
H
J
176-Pin  
CPGA  
K
L
K
L
M
N
P
R
M
N
P
R
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/soc/products/solutions/package/docs.aspx  
3-20  
Revision 8  
ACT 2 Family FPGAs  
PG176  
A1280A Function  
PG176  
A1280A Function  
Pin Number  
A9  
Pin Number  
H3  
CLKA, I/O  
DCLK, I/O  
CLKB, I/O  
SDI, I/O  
MODE  
GND  
VCC  
GND  
GND  
VCC  
VCC  
VCC  
GND  
GND  
VCC  
GND  
GND  
GND  
GND  
VCC  
GND  
GND  
GND  
VCC  
GND  
VCC  
SDO  
B3  
H4  
B8  
H12  
H13  
H14  
J4  
B14  
C3  
C8  
C9  
PRA, I/O  
GND  
J12  
J13  
J14  
K4  
D4  
D5  
VCC  
D6  
GND  
D7  
PRB, I/O  
VCC  
K12  
L4  
D8  
D10  
D11  
D12  
E4  
GND  
M4  
VCC  
M5  
GND  
M6  
GND  
M8  
E12  
F4  
GND  
M10  
M11  
M12  
N8  
VCC  
F12  
G4  
GND  
GND  
G12  
H2  
VCC  
P13  
VCC  
Notes:  
1. All unlisted pin numbers are user I/Os.  
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can  
be terminated directly to GND.  
Revision 8  
3-21  
4 – Datasheet Information  
List of Changes  
The following table lists critical changes that were made in each version of the datasheet.  
Revision  
Changes  
Page  
Revision 8  
(January 2012)  
The ACT 2 datasheet was formatted newly in the style used for current datasheets.  
The same information is present (other than noted in the list of changes for this  
revision) but divided into chapters.  
N/A  
Package names used in Table 1 • ACT 2 Product Family Profile and throughout the  
document were revised to match standards given in Package Mechanical Drawings  
(SAR 27395).  
I
The description for SDO pins had earlier been removed from the datasheet and has  
now been included again, in the "Pin Descriptions" section (SAR 35819).  
2-21  
3-2  
II  
SDO pin numbers had earlier been removed from package pin assignment tables in  
the datasheet, and have now been restored to the pin tables (SAR 35819).  
Revision 7  
(June 2006)  
The "Ordering Information" section was revised to include RoHS information.  
Revision 6  
In the "PG176" package, pin A3 was incorrectly assigned as CLKA, I/O. A3 is a user  
3-21  
(December 2000) I/O. Pin A9 is CLKA, I/O.  
Revision 8  
4-1  
Datasheet Information  
Datasheet Categories  
Categories  
In order to provide the latest information to designers, some datasheet parameters are published before  
data has been fully characterized from silicon devices. The data provided for a given device is  
designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these  
categories are as follows:  
Product Brief  
The product brief is a summarized version of a datasheet (advance or production) and contains general  
product information. This document gives an overview of specific device and family information.  
Advance  
This version contains initial estimated information based on simulation, other products, devices, or speed  
grades. This information can be used as estimates, but not for production. This label only applies to the  
DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not  
been fully characterized.  
Preliminary  
The datasheet contains information based on simulation and/or initial characterization. The information is  
believed to be correct, but changes are possible.  
Production  
This version contains information that is considered to be final.  
Export Administration Regulations (EAR)  
The products described in this document are subject to the Export Administration Regulations (EAR).  
They could require an approved export license prior to export from the United States. An export includes  
release of product or disclosure of technology to a foreign national inside or outside the United States.  
Safety Critical, Life Support, and High-Reliability Applications  
Policy  
The products described in this advance status document may not have completed the Microsemi  
qualification process. Products may be amended or enhanced during the product introduction and  
qualification process, resulting in changes in device functionality or performance. It is the responsibility of  
each customer to ensure the fitness of any product (but especially a new product) for a particular  
purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications.  
Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating  
to life-support applications. A reliability report covering all of the SoC Products Group’s products is  
available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety  
of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for  
additional reliability information.  
4-2  
Revision 8  
Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor  
solutions for: aerospace, defense and security; enterprise and communications; and industrial  
and alternative energy markets. Products include high-performance, high-reliability analog and  
RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and  
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at  
www.microsemi.com.  
Microsemi Corporate Headquarters  
One Enterprise, Aliso Viejo CA 92656 USA  
Within the USA: +1 (949) 380-6100  
Sales: +1 (949) 380-6136  
© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of  
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.  
Fax: +1 (949) 215-4996  
5172104-8/1.12  

与A1280A-VQG176M相关器件

型号 品牌 描述 获取价格 数据表
A1280-CQ172B ETC Field Programmable Gate Array (FPGA)

获取价格

A1280-CQ172C ETC Field Programmable Gate Array (FPGA)

获取价格

A1280-CQ172E ETC Field Programmable Gate Array (FPGA)

获取价格

A1280-CQ172M ETC Field Programmable Gate Array (FPGA)

获取价格

A1280DX-1CQB ACTEL Integrator Series FPGAs: 1200XL and 3200DX Families

获取价格

A1280DX-1CQC ACTEL Integrator Series FPGAs: 1200XL and 3200DX Families

获取价格