5秒后页面跳转
N_03I00471 PDF预览

N_03I00471

更新时间: 2022-03-22 06:43:28
品牌 Logo 应用领域
京瓷/艾维克斯 - KYOCERA AVX /
页数 文件大小 规格书
38页 823K
描述
NTC Thermistors

N_03I00471 数据手册

 浏览型号N_03I00471的Datasheet PDF文件第3页浏览型号N_03I00471的Datasheet PDF文件第4页浏览型号N_03I00471的Datasheet PDF文件第5页浏览型号N_03I00471的Datasheet PDF文件第7页浏览型号N_03I00471的Datasheet PDF文件第8页浏览型号N_03I00471的Datasheet PDF文件第9页 
NTC Thermistors  
General Characteristics  
2.2.5. Voltage – Current curves V (l)  
These curves describe the behavior of the voltage drop V  
measured across the NTC as the current l through the NTC  
is increased.  
2.2.7. Thermal time constant  
When a thermistor is self-heated to a temperature T above  
ambient temperature Tamb, and allowed to cool under zero  
power resistance, this will show a transient situation.  
They describe the state of equilibrium between power  
resulting from Joule effect and dissipated power in the  
surroundings. (Figure 4)  
At any time interval dt, dissipation of the thermistor  
((T – T  
)dt) generates a temperature decrease –HdT,  
amb  
resulting in the equation:  
1
H
dT = -  
dt  
(T - T  
)
amb  
The solution to this equation for any value of t, measured  
from t = 0, is:  
V
Vmax  
(T - T  
(To - T  
)
H
amb  
n  
= -  
t
)
amb  
We can define a thermal time constant as:  
= H/expressed in seconds.  
Where the time t = :  
(T - T ) / (To - T  
I
o
I
) = exp - 1 = 0.368  
amb amb  
Figure 4 – Voltage – current curve V (l)  
expressing that for t = , the thermistor cools to 63.2% of the  
temperature difference between the initial To and Tamb (see  
Figure 5).  
Several zones can be identified:  
– low current zone  
According to IEC 539 our technical data indicates mea-  
dissipated energy only produces negligible heating and  
the curve V (l) is almost linear.  
sured with To = 85°C, T  
T = 47.1°C.  
= 25°C and consequently  
amb  
– non-linear zone  
the curve V (l) displays a maximum voltage Vmax for a  
current lo.This maximum voltage Vmax and the temper-  
ature Tmax reached by the NTC under these conditions  
can be determined by using the equations:  
2
T (°C)  
85  
P = V /R = (T - T  
amb  
)
and  
R = Ramb • exp B (1/T - 1/T  
)
amb  
therefore:  
+
1 T  
47.1  
25  
amb  
ͱ
2
(
)
~
Tmax = B/2 - B /4 - BT  
T
B
amb  
amb  
1 - 1  
max amb  
ͱ
t
-
Vmax = (T  
T
) • R  
amb  
exp B  
(
T
)
t (s)  
max  
amb  
[
T
]
Figure 5 – Temperature – time curve T(t)  
where is the dissipation factor and T  
ent temperature.  
is the ambi-  
amb  
2.2.8. Response time  
More generally, it is possible to define a response time as the  
time the thermistor needs to reach 63.2% of the total  
temperature difference when submitted to a change in the  
thermal equilibrium (for example from 60°C to 25°C in  
silicone oil 47V20 Rhodorsil).  
– high current zone  
for higher currents, an increase in temperature of the  
NTC decreases the resistance and the voltage more  
rapidly than the increase of the current. Above a certain  
dissipated power, the temperature of the NTC exceeds  
the permissible value.  
2.2.6. Current – Time curves l(t)  
When voltage is applied to a thermistor, a certain amount of  
time is necessary to reach the state of equilibrium described  
by the V(l) curves.  
This is the heating up time of the thermistor which depends  
on the voltage and the resistance on one side and the heat  
capacity and dissipation on the other.  
The curves l(t) are of particular interest in timing applications.  
5

与N_03I00471相关器件

型号 品牌 描述 获取价格 数据表
N_03J00102 KYOCERA AVX NTC Thermistors

获取价格

N_03J00681 KYOCERA AVX NTC Thermistors

获取价格

N_03K00152 KYOCERA AVX NTC Thermistors

获取价格

N_03K00222 KYOCERA AVX NTC Thermistors

获取价格

N_03L00272 KYOCERA AVX NTC Thermistors

获取价格

N_03L00332 KYOCERA AVX NTC Thermistors

获取价格