5秒后页面跳转
AD637JD PDF预览

AD637JD

更新时间: 2024-01-13 06:11:21
品牌 Logo 应用领域
亚德诺 - ADI 转换器模拟特殊功能转换器
页数 文件大小 规格书
10页 163K
描述
High Precision, Wide-Band RMS-to-DC Converter

AD637JD 技术参数

是否Rohs认证: 不符合生命周期:Obsolete
零件包装代码:DIP包装说明:CERDIP-14
针数:14Reach Compliance Code:not_compliant
ECCN代码:EAR99HTS代码:8542.39.00.01
风险等级:5.08Is Samacsys:N
转换器类型:RMS TO DC CONVERTERJESD-30 代码:R-GDIP-T14
JESD-609代码:e0长度:19.43 mm
最大线性误差 (EL):0.05%最大负电源电压:-18 V
最小负电源电压:-3 V标称负供电电压:-15 V
功能数量:1端子数量:14
最大工作频率:0.15 MHz最高工作温度:125 °C
最低工作温度:-55 °C封装主体材料:CERAMIC, GLASS-SEALED
封装代码:DIP封装等效代码:DIP14,.3
封装形状:RECTANGULAR封装形式:IN-LINE
峰值回流温度(摄氏度):NOT SPECIFIED最大正输入电压:7 V
电源:+-15 V认证状态:Not Qualified
座面最大高度:5.08 mm子类别:Analog Special Function Converters
最大压摆率:3 mA最大供电电压:18 V
最小供电电压:3 V标称供电电压:15 V
表面贴装:NO温度等级:MILITARY
端子面层:Tin/Lead (Sn/Pb)端子形式:THROUGH-HOLE
端子节距:2.54 mm端子位置:DUAL
处于峰值回流温度下的最长时间:NOT SPECIFIED最大总误差:0.7%
宽度:7.62 mmBase Number Matches:1

AD637JD 数据手册

 浏览型号AD637JD的Datasheet PDF文件第2页浏览型号AD637JD的Datasheet PDF文件第3页浏览型号AD637JD的Datasheet PDF文件第4页浏览型号AD637JD的Datasheet PDF文件第6页浏览型号AD637JD的Datasheet PDF文件第7页浏览型号AD637JD的Datasheet PDF文件第8页 
AD637  
OPTIONAL TRIMS FOR HIGH ACCURACY  
functions of input signal frequency f, and the averaging time  
constant τ (τ: 25 ms/µF of averaging capacitance). As shown in  
Figure 6, the averaging error is defined as the peak value of the  
ac component, ripple, plus the value of the dc error.  
The AD637 includes provisions to allow the user to trim out  
both output offset and scale factor errors. These trims will result  
in significant reduction in the maximum total error as shown in  
Figure 4. This remaining error is due to a nontrimmable input  
offset in the absolute value circuit and the irreducible non-  
linearity of the device.  
The peak value of the ac ripple component of the averaging er-  
ror is defined approximately by the relationship:  
50  
6.3 τf  
The trimming procedure on the AD637 is as follows:  
in % of reading where (t > 1/f)  
l. Ground the input signal, VIN and adjust R1 to give 0 V out-  
put from Pin 9. Alternatively R1 can be adjusted to give the  
E
O
IDEAL  
O
E
correct output with the lowest expected value of VIN  
.
DC ERROR = AVERAGE OF OUTPUT–IDEAL  
2. Connect the desired full scale input to VIN, using either a dc  
or a calibrated ac signal, trim R3 to give the correct output at  
Pin 9, i.e., 1 V dc should give l.000 V dc output. Of course, a  
2 V peak-to-peak sine wave should give 0.707 V dc output.  
Remaining errors are due to the nonlinearity.  
AVERAGE ERROR  
DOUBLE-FREQUENCY  
RIPPLE  
TIME  
5.0  
Figure 6. Typical Output Waveform for a Sinusoidal Input  
AD637K MAX  
This ripple can add a significant amount of uncertainty to the  
accuracy of the measurement being made. The uncertainty can  
be significantly reduced through the use of a post filtering net-  
work or by increasing the value of the averaging capacitor.  
2.5  
INTERNAL TRIM  
AD637K  
EXTERNAL TRIM  
0
The dc error appears as a frequency dependent offset at the  
output of the AD637 and follows the equation:  
1
in % of reading  
0.16 + 6.4τ2 f 2  
2.5  
AD637K: 0.5mV ؎0.2%  
0.25mV ؎0.05%  
EXTERNAL  
Since the averaging time constant, set by CAV, directly sets the  
time that the rms converter “holds” the input signal during  
computation, the magnitude of the dc error is determined only  
by CAV and will not be affected by post filtering.  
5.0  
0
0.5  
1.0  
1.5  
2.0  
INPUT LEVEL – Volts  
100  
Figure 4. Max Total Error vs. Input Level AD637K  
Internal and External Trims  
BUFFER  
AD637  
10  
1
14  
13  
12  
11  
10  
9
R4  
147⍀  
ABSOLUTE  
VALUE  
2
3
PEAK RIPPLE  
V
IN  
+V  
S
1.0  
BIAS  
SECTION  
OUTPUT  
OFFSET  
ADJUST  
SQUARER/DIVIDER  
R1  
50k⍀  
+V  
–V  
4
5
S
DC ERROR  
R2  
1M⍀  
25k⍀  
S
–V  
S
0.1  
10  
25k⍀  
100  
1k  
10k  
6
7
+
V rms  
OUT  
SINEWAVE INPUT FREQUENCY – Hz  
C
AV  
FILTER  
Figure 7. Comparison of Percent DC Error to the Percent  
Peak Ripple over Frequency Using the AD637 in the Stan-  
dard RMS Connection with a 1 × µF CAV  
8
R3  
1k⍀  
The ac ripple component of averaging error can be greatly  
reduced by increasing the value of the averaging capacitor.  
There are two major disadvantages to this: first, the value of the  
averaging capacitor will become extremely large and second, the  
settling time of the AD637 increases in direct proportion to the  
value of the averaging capacitor (Ts = 115 ms/µF of averaging  
capacitance). A preferable method of reducing the ripple is  
through the use of the post filter network, shown in Figure 8.  
This network can be used in either a one or two pole configura-  
tion. For most applications the single pole filter will give the  
best overall compromise between ripple and settling time.  
SCALE FACTOR ADJUST,  
؎2%  
Figure 5. Optional External Gain and Offset Trims  
CHOOSING THE AVERAGING TIME CONSTANT  
The AD637 will compute the true rms value of both dc and ac  
input signals. At dc the output will track the absolute value of  
the input exactly; with ac signals the AD637’s output will ap-  
proach the true rms value of the input. The deviation from the  
ideal rms value is due to an averaging error. The averaging error  
is comprised of an ac and dc component. Both components are  
REV. E  
–5–  

与AD637JD相关器件

型号 品牌 描述 获取价格 数据表
AD637JD/+ ADI RMS TO DC CONVERTER, 0.15MHz, CDIP14, SIDE BRAZED, CERAMIC, DIP-14

获取价格

AD637JDZ ADI High Precision, Wideband RMS-to-DC Converter

获取价格

AD637JQ ADI High Precision, Wide-Band RMS-to-DC Converter

获取价格

AD637JR ADI High Precision, Wide-Band RMS-to-DC Converter

获取价格

AD637JR-REEL ADI High Precision, Wide-Band RMS-to-DC Converter

获取价格

AD637JR-REEL7 ADI High Precision, Wide-Band RMS-to-DC Converter

获取价格