5秒后页面跳转
AD629BR-REEL PDF预览

AD629BR-REEL

更新时间: 2024-01-22 18:50:20
品牌 Logo 应用领域
亚德诺 - ADI 运算放大器放大器电路光电二极管
页数 文件大小 规格书
12页 303K
描述
High Common-Mode Voltage Difference Amplifier

AD629BR-REEL 技术参数

是否无铅: 不含铅是否Rohs认证: 符合
生命周期:Active零件包装代码:SOIC
包装说明:SOP,针数:8
Reach Compliance Code:unknown风险等级:5.14
放大器类型:OPERATIONAL AMPLIFIER标称共模抑制比:96 dB
最大输入失调电压:1000 µVJESD-30 代码:R-PDSO-G8
JESD-609代码:e3长度:4.9 mm
湿度敏感等级:1负供电电压上限:-18 V
标称负供电电压 (Vsup):-15 V功能数量:1
端子数量:8最高工作温度:85 °C
最低工作温度:-40 °C封装主体材料:PLASTIC/EPOXY
封装代码:SOP封装形状:RECTANGULAR
封装形式:SMALL OUTLINE峰值回流温度(摄氏度):260
座面最大高度:1.75 mm标称压摆率:2.1 V/us
子类别:Operational Amplifier供电电压上限:18 V
标称供电电压 (Vsup):15 V表面贴装:YES
温度等级:INDUSTRIAL端子面层:MATTE TIN
端子形式:GULL WING端子节距:1.27 mm
端子位置:DUAL处于峰值回流温度下的最长时间:40
宽度:3.9 mmBase Number Matches:1

AD629BR-REEL 数据手册

 浏览型号AD629BR-REEL的Datasheet PDF文件第6页浏览型号AD629BR-REEL的Datasheet PDF文件第7页浏览型号AD629BR-REEL的Datasheet PDF文件第8页浏览型号AD629BR-REEL的Datasheet PDF文件第10页浏览型号AD629BR-REEL的Datasheet PDF文件第11页浏览型号AD629BR-REEL的Datasheet PDF文件第12页 
AD629  
shows some sample error voltages generated by a common-mode  
voltage of 200 V dc with shunt resistors from 20 to 2000 .  
Assuming that the shunt resistor has been selected to utilize the  
full 10 V output swing of the AD629, the error voltage becomes  
quite signicant as RSHUNT increases.  
DIGITAL  
ANALOG POWER  
SUPPLY  
POWER SUPPLY  
+5V  
GND  
5V  
+5V  
GND  
0.1F  
0.1F  
0.1F 0.1F  
Table I. Error Resulting from Large Values of RSHUNT  
(Uncompensated Circuit)  
V
AGND  
DGND  
DD  
GND  
V
DD  
12  
+V  
V  
S
S
+IN  
AD7892-2  
PROCESSOR  
AD629  
V
OUT  
V
IN1  
RS ()  
Error VOUT (V)  
Error Indicated (mA)  
IN  
V
REF(+)  
REF()  
IN2  
20  
1000  
2000  
0.01  
0.498  
1
0.5  
0.498  
0.5  
Figure 31. Optimal Grounding Practice for a Bipolar Supply  
Environment with Separate Analog and Digital Supplies  
If it is desired to measure low current or current near zero in a  
high common-mode environment, an external resistor equal to  
the shunt resistor value may be added to the low impedance side  
of the shunt resistor as shown in Figure 33.  
POWER SUPPLY  
+5V  
GND  
0.1F  
0.1F  
+V  
S
AD629  
21.1k⍀  
0.1F  
REF()  
IN  
1
2
3
4
8
7
6
5
NC  
+V  
V
AGND DGND  
ADC  
R
DD  
380k380k⍀  
COMP  
+V  
V  
S
S
V
GND  
DD  
+IN  
0.1F  
S
AD629  
V
OUT  
V
I
R
SHUNT  
IN  
SHUNT  
PROCESSOR  
380k⍀  
20k⍀  
+IN  
IN  
V
REF(+)  
REF()  
V
OUT  
REF  
V  
REF(+)  
S
Figure 32. Optimal Ground Practice in a Single Supply  
Environment  
0.1F  
V  
S
NC = NO CONNECT  
Figure 33. Compensating for Large Sense Resistors  
If there is only a single power supply available, it must be shared  
by both digital and analog circuitry. Figure 32 shows how to  
minimize interference between the digital and analog circuitry.  
In this example, the ADCs reference is used to drive the  
AD629s REF(+) and REF() pins. This means that the reference  
Output Filtering  
A simple 2-pole low-pass Butterworth lter can be implemented  
using the OP177 at the output of the AD629 to limit noise at  
the output, as shown in Figure 34. Table II gives recommended  
component values for various corner frequencies, along with the  
peak-to-peak output noise for each case.  
must be capable of sourcing and sinking a current equal to VCM  
/
200 k. As in the previous case, separate analog and digital  
ground planes should be used (reasonably thick traces can be  
used as an alternative to a digital ground plane). These ground  
planes should be connected at the power supplys ground pin.  
Separate traces (or power planes) should be run from the power  
supply to the supply pins of the digital and analog circuits. Ideally,  
each device should have its own power supply trace, but these  
can be shared by a number of devices as long as a single trace is  
not used to route current to both digital and analog circuitry.  
+V  
S
AD629  
21.1k⍀  
REF()  
1
2
3
4
8
7
6
5
+V  
S
NC  
C1  
0.1F  
0.1F  
380k380k⍀  
IN  
+V  
S
V
OP177  
0.1F  
R1  
R2  
C2  
OUT  
380k⍀  
20k⍀  
+IN  
V  
REF(+)  
S
V  
S
V  
S
Using a Large Sense Resistor  
0.1F  
Insertion of a large shunt resistance across the input Pins 2 and 3  
will imbalance the input resistor network, introducing a common-  
mode error. The magnitude of the error will depend on the  
common-mode voltage and the magnitude of RSHUNT. Table I  
NC = NO CONNECT  
Figure 34. Filtering of Output Noise Using a 2-Pole  
Butterworth Filter  
Table II. Recommended Values for 2-Pole Butterworth Filter  
Corner Frequency  
R1  
R2  
C1  
C2  
Output Noise (p-p)  
No Filter  
50 kHz  
5 kHz  
500 Hz  
50 Hz  
3.2 mV  
1 mV  
0.32 mV  
100 µV  
32 µV  
2.94 k1%  
2.94 k1%  
2.94 k1%  
2.7 k10%  
1.58 k1%  
1.58 k1%  
1.58 k1%  
1.5 k10%  
2.2 nF 10%  
22 nF 10%  
220 nF 10%  
2.2 µF 20%  
1 nF 10%  
10 nF 10%  
0.1 µF 10%  
1 µF 20%  
REV. A  
–9–  

AD629BR-REEL 替代型号

型号 品牌 替代类型 描述 数据表
AD629BRZ-RL ADI

类似代替

High Common-Mode Voltage, Difference Amplifier

与AD629BR-REEL相关器件

型号 品牌 获取价格 描述 数据表
AD629BR-REEL7 ADI

获取价格

High Common-Mode Voltage Difference Amplifier
AD629BRZ ADI

获取价格

High Common-Mode Voltage, Difference Amplifier
AD629BRZ-R7 ADI

获取价格

High Common-Mode Voltage, Difference Amplifier
AD629BRZ-REEL ADI

获取价格

OP-AMP, 1000uV OFFSET-MAX, PDSO8, PLASTIC, MS-012AA, SOIC-8
AD629BRZ-REEL7 ADI

获取价格

OP-AMP, 1000uV OFFSET-MAX, PDSO8, PLASTIC, MS-012AA, SOIC-8
AD629BRZ-RL ADI

获取价格

High Common-Mode Voltage, Difference Amplifier
AD629-EVAL ADI

获取价格

High Common-Mode Voltage, Difference Amplifier
AD63 ETC

获取价格

ADAPTER DIL FUER IC IN SMD 32POL
AD630 ADI

获取价格

Balanced Modulator/Demodulator
AD630_04 ADI

获取价格

Balanced Modulator/Demodulator