5秒后页面跳转
56F827 PDF预览

56F827

更新时间: 2022-04-23 23:00:11
品牌 Logo 应用领域
飞思卡尔 - FREESCALE 控制器
页数 文件大小 规格书
60页 1136K
描述
16-bit Digital Signal Controllers

56F827 数据手册

 浏览型号56F827的Datasheet PDF文件第1页浏览型号56F827的Datasheet PDF文件第3页浏览型号56F827的Datasheet PDF文件第4页浏览型号56F827的Datasheet PDF文件第5页浏览型号56F827的Datasheet PDF文件第6页浏览型号56F827的Datasheet PDF文件第7页 
56F827 General Description  
Up to 40 MIPS at 80MHz core frequency  
MCU-friendly instruction set supports both DSP and  
controller functions: MAC, bit manipulation unit, 14  
addressing modes  
DSP and MCU functionality in a unified,  
C-efficient architecture  
8-channel Programmable Chip Select  
10-channel, 12-bit ADC  
Hardware DO and REP loops  
64K × 16-bit words (128KB) Program Flash  
1K × 16-bit words (2KB) Program RAM  
4K × 16-bit words (8KB) Data Flash  
4K × 16-bit words (8KB) Data RAM  
Synchronous Serial Interface (SSI)  
Serial Port Interface (SPI)  
Serial Communications Interface (SCI)  
Time-of-Day (TOD) Timer  
Up to 64K × 16-bit words (128KB) external memory  
expansion each for Program and Data memory  
128-pin LQFP Package  
JTAG/OnCE™ for debugging  
General Purpose Quad Timer  
16-dedicated and 48 shared GPIO  
EXTBOOT  
DEBUG  
IRQB  
IRQA  
RESET  
V
2
V
5
V
5
V
V
V
SSA  
DDIO  
SSIO  
DD  
SS  
DDA  
6
3
2
4
inputs  
10  
JTAG/  
OnCE  
Port  
Low Voltage Supervisor  
Analog Reg  
ADC  
V
V
, V  
,
REFP REFMID  
REFIN  
3
Interrupt  
Data ALU  
Bit  
Manipulation  
Unit  
Controller  
Program Controller  
and Hardware  
Looping Unit  
Address  
Generation  
Unit  
V
REFLO  
16 x 16 + 36 36-Bit MAC  
Three 16-bit Input Registers  
Two 36-bit Accumulators  
V
REFHI  
Program and Boot  
Memory  
64512 x 16 Flash  
1024 x 16 SRAM  
PAB  
PDB  
16-Bit  
56800  
Core  
CLKO  
PLL  
Quad Timer A/  
or GPIO  
4
VPP  
XDB2  
CGDB  
XAB1  
XAB2  
Clock  
Gen  
XTAL  
Data Memory  
4096 x 16 Flash  
4096 x 16 SRAM  
SCI 2 or  
GPIO  
EXTAL  
2
6
INTERRUPT  
IPBB  
CONTROLS  
CONTROLS  
SSI 0 or  
GPI0  
16  
16  
External  
Address Bus  
Switch  
A[00:15]  
or  
GPIOA16[00:16]  
COP  
RESET  
SCI 0 &1 or  
SPI 0  
External  
Bus  
Interface  
Unit  
COP/  
Watchdog  
16  
16  
4
MODULE  
CONTROLS  
SPI 1 or  
GPIO  
IPBus Bridge  
(IPBB)  
Application-  
Specific  
Memory &  
Peripherals  
D[00:15]  
or  
GPIOG16[00:16]  
External  
Data Bus  
Switch  
4
6
ADDRESS  
BUS [8:0]  
PCS [2:7}  
Programmable  
Chip Select  
PS or PCS[0]  
DS or PCS[1]  
WR  
Bus  
Control  
Dedicated  
GPIO  
DATA  
BUS [15:0]  
TOD  
Timer  
16  
RD  
56F827 Block Diagram  
56F827 Technical Data, Rev. 12  
Freescale Semiconductor  
3
Part 1 Overview  
1.1 56F827 Features  
1.1.1  
Processing Core  
Efficient 16-bit 56800 family processor engine with dual Harvard architecture  
As many as 40 Million Instructions Per Second (MIPS) at 80MHz core frequency  
Single-cycle 16 × 16-bit parallel Multiplier-Accumulator (MAC)  
Two 36-bit accumulators including extension bits  
16-bit bidirectional shifter  
Parallel instruction set with unique processor addressing modes  
Hardware DO and REP loops  
Three internal address buses and one external address bus  
Four internal data buses and one external data bus  
Instruction set supports both DSP and controller functions  
Controller style addressing modes and instructions for compact code  
Efficient C Compiler and local variable support  
Software subroutine and interrupt stack with depth limited only by memory  
JTAG/OnCE Debug Programming Interface  
1.1.2  
Memory  
Harvard architecture permits as many as three simultaneous accesses to Program and Data memory  
On-chip memory including a low-cost, high-volume Flash solution  
— 64K words of Program Flash  
— 1K words of Program RAM  
— 4K words of Data RAM  
— 4K words of Data Flash  
Off-chip memory expansion capabilities programmable for 0, 4, 8, or 12 wait states  
— As much as 64 K × 16 Data memory  
— As much as 64 K × 16 Program memory  
1.1.3  
Peripheral Circuits for 56F827  
One 10 channel, 12-bit, Analog-to-Digital Converter (ADC)  
One General Purpose Quad Timer totaling 4 pins  
One Serial Peripheral Interface with configurable four-pin port multiplexed with two Serial  
Communications Interfaces totalling 4 pins or 4 GPIO pins  
Three Serial Communication Interfaces with 2 pins each (or 6 additional GPIO pins)  
Two Serial Peripheral Interface with configurable four-pin port (or 4 additional GPIO pins)  
56F827 Technical Data, Rev. 12  
4
Freescale Semiconductor  
56F827 Description  
One Synchronous Serial Interface with 6 pins (or 6 additional GPIO pins)  
One 8-channel Programmable Chip Select  
Sixteen dedicated and forty eight multiplexed GPIO pins (64 total)  
Computer-Operating Properly (COP) Watchdog timer  
Two external interrupt pins  
External reset pin for hardware reset  
JTAG/On-Chip Emulation (OnCE™) for unobtrusive, processor speed-independent debugging  
Software-programmable, Phase Locked Loop-based frequency synthesizer for the core clock  
Fabricated in high-density CMOS with 5V-tolerant, TTL-compatible digital inputs  
One Time of Day (TOD) Timer  
1.1.4  
Power Information  
Dual power supply, 3.3V and 2.5V  
Wait and Multiple Stop modes available  
1.2 56F827 Description  
The 56F827 is a member of the 56800 core-based family of controllers. It combines, on a single chip, the  
processing power of a DSP and the functionality of a microcontroller with a flexible set of peripherals to  
create an extremely cost-effective solution for general purpose applications. Because of its low cost,  
configuration flexibility, and compact program code, the 56F827 is well-suited for many applications.  
The 56F827 includes many peripherals that are especially useful for applications such as: noise  
suppression, ID tag readers, sonic/subsonic detectors, security access devices, remote metering, sonic  
alarms, and telephony.  
The 56800 core is based on a Harvard-style architecture consisting of three execution units operating in  
parallel, allowing as many as six operations per instruction cycle. The microprocessor-style programming  
model and optimized instruction set allow straightforward generation of efficient, compact code for both  
DSP and MCU applications. The instruction set is also highly efficient for C/C++ Compilers to enable  
rapid development of optimized control applications.  
The 56F827 supports program execution from either internal or external memories. Two data operands can  
be accessed from the on-chip Data RAM per instruction cycle. The 56F827 also provides two external  
dedicated interrupt lines, and up to 64 General Purpose Input/Output (GPIO) lines, depending on  
peripheral configuration.  
The 56F827 controller includes 64K words (16-bit) of Program Flash and 4K words of Data Flash (each  
programmable through the JTAG port) with 1K words of Program RAM and 4K words of Data RAM. It  
also supports program execution from external memory. The 56800 core is capable of accessing two data  
operands from the on-chip Data RAM per instruction cycle.  
This controller also provides a full set of standard programmable peripherals that include one 10-input,  
12-bit Analog-to-Digital Converters (ADC), one Synchronous Serial Interface (SSI), two Serial Peripheral  
Interfaces (SPI), three Serial Communications Interfaces (SCI). (Note: The second SPI is multiplexed with  
56F827 Technical Data, Rev. 12  
Freescale Semiconductor  
5
the second and third SCIs, giving the option to select a second SPI or two additional SCIs.) This controller  
also provides one Programmable Chip Select (PCS), and one Quad Timer. The SCI, SSI, SPI, Quad Timer  
A, and select address and data lines can be used as General Purpose Input/Outputs (GPIOs) if those  
functions are not required.  
1.3 Award-Winning Development Environment  
Processor ExpertTM (PE) provides a Rapid Application Design (RAD) tool that combines easy-to-use  
component-based software application creation with an expert knowledge system.  
The Code Warrior Integrated Development Environment is a sophisticated tool for code navigation,  
compiling, and debugging. A complete set of evaluation modules (EVMs) and development system cards  
will support concurrent engineering. Together, PE, Code Warrior and EVMs create a complete, scalable  
tools solution for easy, fast, and efficient development.  
1.4 Product Documentation  
The four documents listed in Table 2-1 are required for a complete description and proper design with the  
56F827. Documentation is available from local Freescale distributors, Freescale semiconductor sales  
offices, Freescale Literature Distribution Centers, or online at www.freescale.com.  
Table 1-1 56F827 Chip Documentation  
Topic  
Description  
Order Number  
56800EFM  
56800E  
Detailed description of the 56800 family architecture,  
and 16-bit core processor and the instruction set  
Family Manual  
DSP56F826/F827  
User’s Manual  
Detailed description of memory, peripherals, and  
interfaces of the 56F826 and 56F827  
DSP56F826-827UM  
DSP56F827  
56F827  
Technical Data Sheet  
Electrical and timing specifications, pin descriptions,  
and package descriptions (this document)  
56F827  
Errata  
Details any chip issues that might be present  
DSP56F827E  
56F827 Technical Data, Rev. 12  
6
Freescale Semiconductor  
Data Sheet Conventions  
1.5 Data Sheet Conventions  
This data sheet uses the following conventions:  
OVERBAR  
This is used to indicate a signal that is active when pulled low. For example, the RESET pin is  
active when low.  
“asserted”  
“deasserted”  
Examples:  
A high true (active high) signal is high or a low true (active low) signal is low.  
A high true (active high) signal is low or a low true (active low) signal is high.  
Voltage1  
Signal/Symbol  
Logic State  
True  
Signal State  
Asserted  
PIN  
PIN  
PIN  
PIN  
VIL/VOL  
False  
Deasserted  
Asserted  
VIH/VOH  
VIH/VOH  
VIL/VOL  
True  
False  
Deasserted  
1. Values for VIL, VOL, VIH, and VOH are defined by individual product specifications.  
56F827 Technical Data, Rev. 12  
Freescale Semiconductor  
7
Part 2 Signal/Connection Descriptions  
2.1 Introduction  
The input and output signals of the 56F827 are organized into functional groups, as shown in Table 2-1  
and as illustrated in Figure 2-1. Table 2-2 describes the signal or signals present on a pin.  
Table 2-1 Functional Group Pin Allocations  
Functional Group  
Number of Pins  
(3,5,1,1)  
Power (VDD, VDDIO, VDDA or VDDA_ADC  
Ground (VSS, VSSIO, VSSA, orVSSA_ADC  
VPP  
)
)
(3,5,1,1)  
1
3
PLL and Clock  
Address Bus1  
16  
Data Bus1  
16  
Bus Control  
4
4
Quad Timer Module Ports1  
JTAG/On-Chip Emulation (OnCE)  
6
16  
6
Dedicated General Purpose Input/Output  
Synchronous Serial Interface (SSI) Port1  
Serial Peripheral Interface (SPI) Port1  
4
4
2
Serial Communications Interface1 (SCI0, SCI1) Port2  
Serial Communications Interface2 (SCI2) Port1  
Analog to Digital Converter (ADC)  
15  
6
Programmable Chip Select (PCS)3  
Interrupt and Program Control  
5
1. Alternately, GPIO pins  
2. Alternately, SPI pins  
3. In addition, 2 Bus Control pins can be programmed as PCS[0-1].  
56F827 Technical Data, Rev. 12  
8
Freescale Semiconductor  
Introduction  
VDD  
VDDA  
GPIOB0–7  
GPIOD0–7  
2.5V Power  
3.3V Analog Power  
3.3V Analog Power  
3.3V Power  
8
8
Dedicated  
GPIO  
3
1
1
5
4*  
1
1
5
VDDA_ADC  
VDDIO  
SRD (GPIOC0)  
SRFS (GPIOC1)  
SRCK (GPIOC2)  
STD (GPIOC3)  
STFS (GPIOC4)  
STCK (GPIOC5)  
1
1
1
1
1
1
VSS  
Ground  
VSSA  
SSI Port  
or GPIO  
Analog Ground  
Analog Ground  
Ground  
VSSA_ADC  
VSSIO  
VPP  
56F827  
Other  
Supply Port  
1
SCLK (GPIOF4)  
MOSI (GPIOF5)  
MISO (GPIOF6)  
SS (GPIOF7)  
1
1
1
1
EXTAL  
XTAL(CLOCKIN)  
CLKO  
SPI1 Port  
or GPIO  
PLL  
and  
Clock  
1
1
1
External  
Address Bus or  
GPIO  
A0-A15(GPIOA0–15)  
D0–D15(GPIOG0-15)  
TXD0 (SCLK0)  
RXD0 (MOSI0)  
TXD1 (MISO0)  
RXD1 (SS0)  
1
1
1
1
16  
16  
SCI0,SCI1  
Port or  
SPI0 Port  
External Data  
Bus or GPIO  
PS (PCS0)  
DS (PCS1)  
RD  
1
1
1
1
TXD2 (GPIOC6)  
RXD2 (GPIOC7)  
1
1
External  
Bus Control  
SCI2 Port  
or GPIO  
WR  
PCS2-7  
Programmable  
Chip Select  
6
TA0 (GPIOF0)  
TA1 (GPIOF1)  
TA2 (GPIOF2)  
TA3 (GPIOF3)  
1
1
1
1
ANA0–9  
VREFN  
Quad Timer A  
or GPIO  
10  
1
VREFP  
1
ADC  
Port  
VREFMID  
VREFLO  
VREFHI  
1
TCK  
TMS  
TDI  
1
1
1
1
1
1
1
1
JTAG/OnCE™  
Port  
TDO  
TRST  
DE  
IRQA  
1
1
1
1
Interrupt/  
Program  
Control  
IRQB  
RESET  
EXTBOOT  
*Includes TCS pin, which is reserved for factory use and is tied to VSS  
1
Figure 2-1 56F827 Signals Identified by Functional Group  
1. Alternate pin functionality is shown in parenthesis.  
56F827 Technical Data, Rev. 12  
Freescale Semiconductor  
9
2.2 Signals and Package Information  
All inputs have a weak internal pull-up circuit associated with them. These pull-up circuits are always  
enabled. Exceptions:  
1. When a pin is owned by GPIO, then the pull-up may be disabled under software control.  
2. TCK has a weak pull-down circuit always active.  
Table 2-2 56F827 Signal and Package Information for the 128 Pin LQFP  
Signal Name Pin No.  
Type  
VDD  
Description  
VDD  
VDD  
116  
81  
Power—These pins provide power to the internal structures of the chip, and  
are generally connected to a 2.5V supply.  
VDD  
VDD  
19  
VDD  
VDDA  
62  
VDDA  
Analog Power—This pin is a dedicated power pin for the analog portion of the  
chip and should be connected to a low-noise 3.3V supply.  
VDDA_ADC  
69  
VDDA  
Analog Power—This pin is a dedicated power pin for the analog portion of the  
ADC module and should be connected to a low-noise 3.3V supply.  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VSS  
113  
82  
56  
29  
4
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VSS  
Power In/Out—These pins provide power to the I/O structures of the chip, and  
are generally connected to a 3.3V supply.  
115  
80  
20  
61  
63  
GND—These pins provide grounding for the internal structures of the chip. All  
should be attached to VSS.  
VSS  
VSS  
VSS  
VSS  
VSSA  
VSSA  
VSSA  
Analog Ground—This pin supplies an analog ground.  
VSSA_ADC  
Analog Ground—This pin is a dedicated ground pin for the analog portion of  
the ADC module.  
VSSIO  
VSSIO  
VSSIO  
VSSIO  
VSSIO  
TCS  
114  
83  
58  
30  
5
VSSIO  
VSSIO  
VSSIO  
VSSIO  
VSSIO  
GND In/Out—These pins provide grounding for the I/O ring on the chip.  
All should be attached to VSS.  
43  
Input/Output  
(Schmitt)  
TCS—This pin is reserved for factory use. It must be tied to VSS for normal  
use. In block diagrams, this pin is considered an additional VSS.  
56F827 Technical Data, Rev. 12  
10  
Freescale Semiconductor  
Signals and Package Information  
Table 2-2 56F827 Signal and Package Information for the 128 Pin LQFP (Continued)  
Signal Name Pin No.  
Type  
Description  
VPP  
90  
Input  
VPP—This pin should be left unconnected as an open circuit for normal  
functionality.  
EXTAL  
59  
Input  
External Crystal Oscillator Input—This input should be connected to a  
4MHz external crystal or ceramic resonator. For more information, please refer  
to Section 3.6.  
This pin can also be connected to an external clock source. For more  
information, please refer to Section 3.6.3.  
XTAL  
60  
57  
Output  
Crystal Oscillator Output—This output connects the internal crystal oscillator  
output to an external crystal or ceramic resonator. If an external clock source  
over 4MHz is used, XTAL must be used as the input and EXTAL connected to  
VSS. For more information, please refer to Section 3.6.3.  
(CLOCKIN)  
CLKO  
Input  
External Clock Input—This input should be used when using an external  
clock or ceramic resonator.  
Output  
Clock Output—This pin outputs a buffered clock signal. By programming the  
CLKO Select Register (CLKOSR), the user can select between outputting a  
version of the signal applied to XTAL and a version of the device master clock  
at the output of the PLL. The clock frequency on this pin can be disabled by  
programming the CLKO Select Register (CLKOSR).  
56F827 Technical Data, Rev. 12  
Freescale Semiconductor  
11  
Table 2-2 56F827 Signal and Package Information for the 128 Pin LQFP (Continued)  
Signal Name Pin No.  
Type  
Description  
A0  
21  
Output  
Address Bus—A0–A15 specify the address for external Program or Data  
memory accesses.  
(GPIOA0)  
Input/Output  
Port A GPIO—These 16 General Purpose I/O (GPIO) pins can be individually  
programmed as input or output pins.  
A1  
(GPIOA1)  
22  
23  
24  
25  
26  
27  
28  
31  
32  
33  
34  
35  
36  
37  
38  
After reset, the default state is Address Bus.  
A2  
(GPIOA2)  
A3  
(GPIOA3)  
A4  
(GPIOA4)  
A5  
(GPIOA5)  
A6  
(GPIOA6)  
A7  
(GPIOA7)  
A8  
(GPIOA8)  
A9  
(GPIOA9)  
A10  
(GPIOA10)  
A11  
(GPIOA11)  
A12  
(GPIOA12)  
A13  
(GPIOA13)  
A14  
(GPIOA14)  
A15  
(GPIOA15)  
56F827 Technical Data, Rev. 12  
12  
Freescale Semiconductor  
Signals and Package Information  
Table 2-2 56F827 Signal and Package Information for the 128 Pin LQFP (Continued)  
Signal Name Pin No.  
Type  
Description  
D0  
125  
Input/Output  
Data Bus—D0–D15 specify the data for external Program or Data memory  
accesses. D0-D15 are tri-stated when the external bus is inactive.  
Port G GPIO—These 16 General Purpose I/O (GPIO) pins can be individually  
(GPIOG0)  
Input/Output  
programmed as input or output pins.  
D1  
(GPIOG1)  
126  
127  
128  
1
After reset, the default state is Address Bus.  
D2  
(GPIOG2)  
D3  
(GPIOG3)  
D4  
(GPIOG4)  
D5  
2
(GPIOG5)  
D6  
3
(GPIOG6)  
D7  
6
(GPIOG7)  
D8  
7
(GPIOG8)  
D9  
8
(GPIOG9)  
D10  
9
(GPIOG10)  
D11  
(GPIOG11)  
10  
11  
12  
13  
14  
D12  
(GPIOG12)  
D13  
(GPIOG13)  
D14  
(GPIOG14)  
D15  
(GPIOG15)  
PS  
(PCS0)  
18  
17  
Output  
Output  
Program Memory Select—PS is asserted low for external program memory  
access. This pin can also be programmed as a programmable chip select.  
DS  
Data Memory Select—DS is asserted low for external Data memory access.  
(PCS1)  
This pin can also be programmed as a programmable chip select.  
56F827 Technical Data, Rev. 12  
Freescale Semiconductor  
13  
Table 2-2 56F827 Signal and Package Information for the 128 Pin LQFP (Continued)  
Signal Name Pin No.  
Type  
Description  
RD  
15  
Output  
Read Enable—RD is asserted during external memory read cycles. When RD  
is asserted low, pins D0–D15 become inputs and an external device is  
enabled onto the device data bus. When RD is deasserted high, the external  
data is latched inside the device. When RD is asserted, it qualifies the  
A0–A15, PS, and DS pins. RD can be connected directly to the OE pin of a  
Static RAM or ROM.  
WR  
16  
Output  
Write Enable—WR is asserted during external memory write cycles. When  
WR is asserted low, pins D0–D15 become outputs and the device puts data on  
the bus. When WR is deasserted high, the external data is latched inside the  
external device. When WR is asserted, it qualifies the A0–A15, PS, and DS  
pins. WR can be connected directly to the WE pin of a Static RAM.  
TA0  
112  
Input/Output  
Input/Output  
TA0–3—Timer A Channels 0, 1, 2, and 3  
(GPIOF0)  
Port F GPIO—These four General Purpose I/O (GPIO) pins can be  
individually programmed as input or output.  
TA1  
(GPIOF1)  
111  
110  
109  
44  
After reset, the default state is Quad Timer.  
TA2  
(GPIOF2)  
TA3  
(GPIOF3)  
TCK  
Input  
(Schmitt)  
Test Clock Input—This input pin provides a gated clock to synchronize the  
test logic and shift serial data to the JTAG/OnCE port. The pin is connected  
internally to a pull-down resistor.  
TMS  
46  
Input  
(Schmitt)  
Test Mode Select Input—This input pin is used to sequence the JTAG TAP  
controller’s state machine. It is sampled on the rising edge of TCK and has an  
on-chip pull-up resistor.  
Note: Always tie the TMS pin to VDD through a 2.2K resistor.  
TDI  
TDO  
TRST  
48  
47  
45  
Input  
(Schmitt)  
Test Data Input—This input pin provides a serial input data stream to the  
JTAG/OnCE port. It is sampled on the rising edge of TCK and has an on-chip  
pull-up resistor.  
Input/Output  
Test Data Output—This tri-statable output pin provides a serial output data  
stream from the JTAG/OnCE port. It is driven in the Shift-IR and Shift-DR  
controller states, and changes on the falling edge of TCK.  
Input  
(Schmitt)  
Test Reset—As an input, a low signal on this pin provides a reset signal to the  
JTAG TAP controller. To ensure complete hardware reset, TRST should be  
asserted whenever RESET is asserted. The only exception occurs in a  
debugging environment when a hardware device reset is required and it is  
necessary not to reset the JTAG/OnCE module. In this case, assert RESET,  
but do not assert TRST. TRST must always be asserted at power-up.  
Note: For normal operation, connect TRST directly to VSS. If the design is to be  
used in a debugging environment, TRST may be tied to VSS through a 1K resistor.  
DE  
41  
Output  
Debug Event—DE provides a low pulse on recognized debug events.  
56F827 Technical Data, Rev. 12  
14  
Freescale Semiconductor  
Signals and Package Information  
Table 2-2 56F827 Signal and Package Information for the 128 Pin LQFP (Continued)  
Signal Name Pin No.  
Type  
Description  
GPIOB0  
GPIOB1  
GPIOB2  
GPIOB3  
GPIOB4  
GPIOB5  
GPIOB6  
GPIOB7  
GPIOD0  
GPIOD1  
GPIOD2  
GPIOD3  
GPIOD4  
GPIOD5  
GPIOD6  
GPIOD7  
SRD  
124  
123  
122  
121  
120  
119  
118  
117  
98  
Input/Output  
Port B GPIO—These eight dedicated General Purpose I/O (GPIO) pins can  
be individually programmed as input or output pins.  
After reset, the default state is GPIO input.  
Input/ Output Port D GPIO—These eight dedicated GPIO pins can be individually  
programmed as an input or output pins.  
97  
After reset, the default state is GPIO input.  
96  
95  
94  
93  
92  
91  
55  
Input/Output  
Input/Output  
SSI Receive Data (SRD)—This input pin receives serial data and transfers the  
data to the SSI Receive Shift Receiver.  
(GPIOC0)  
SRFS  
Port C GPIO—This is a General Purpose I/O (GPIO) pin with the capability of  
being individually programmed as input or output.  
After reset, the default state is GPIO input.  
54  
Input/Output  
SSI Serial Receive Frame Sync (SRFS)—This bidirectional pin is used by the  
receive section of the SSI as frame sync I/O or flag I/O. The STFS can be  
used only by the receiver. It is used to synchronize data transfer and can be an  
input or an output.  
(GPIOC1)  
SRCK  
Input/Output  
Input/Output  
Port C GPIO—This is a General Purpose I/O (GPIO) pin with the capability of  
being individually programmed as input or output.  
After reset, the default state is GPIO input.  
53  
SSI Serial Receive Clock (SRCK)—This bidirectional pin provides the serial  
bit rate clock for the Receive section of the SSI. The clock signal can be  
continuous or gated and can be used by both the transmitter and receiver in  
synchronous mode.  
(GPIOC2)  
Input/Output  
Port C GPIO—This is a General Purpose I/O (GPIO) pin with the capability of  
being individually programmed as input or output.  
After reset, the default state is GPIO input.  
56F827 Technical Data, Rev. 12  
Freescale Semiconductor  
15  
Table 2-2 56F827 Signal and Package Information for the 128 Pin LQFP (Continued)  
Signal Name Pin No.  
Type  
Description  
STD  
52  
Output  
SSI Transmit Data (STD)—This output pin transmits serial data from the SSI  
Transmitter Shift Register.  
(GPIOC3)  
Input/Output  
Input  
Port C GPIO—This is a General Purpose I/O (GPIO) pin with the capability of  
being individually programmed as input or output.  
After reset, the default state is GPIO input.  
STFS  
51  
SSI Serial Transmit Frame Sync (STFS)—This bidirectional pin is used by  
the Transmit section of the SSI as frame sync I/O or flag I/O. The STFS can be  
used by both the transmitter and receiver in synchronous mode. It is used to  
synchronize data transfer and can be an input or output pin.  
Port C GPIO—This is a General Purpose I/O (GPIO) pin with the capability of  
(GPIOC4)  
STCK  
Input/Output  
being individually programmed as input or output.  
After reset, the default state is GPIO input.  
50  
Input/ Output SSI Serial Transmit Clock (STCK)—This bidirectional pin provides the serial  
bit rate clock for the transmit section of the SSI. The clock signal can be  
continuous or gated. It can be used by both the transmitter and receiver in  
synchronous mode.  
(GPIOC5)  
SCLK  
Input/Output  
Port C GPIO—This is a General Purpose I/O (GPIO) pin with the capability of  
being individually programmed as input or output.  
After reset, the default state is GPIO input.  
102  
101  
100  
Input/Output  
SPI Serial Clock—In master mode, this pin serves as an output, clocking  
slaved listeners. In slave mode, this pin serves as the data clock input.  
Port F GPIO—This General Purpose I/O (GPIO) pin can be individually  
programmed as input or output.  
(GPIOF4)  
MOSI  
Input/Output  
Input/Output  
After reset, the default state is SCLK.  
SPI Master Out/Slave In (MOSI)—This serial data pin is an output from a  
master device and an input to a slave device. The master device places data  
on the MOSI line a half-cycle before the clock edge that the slave device uses  
to latch the data.  
(GPIOF5)  
MISO  
Input/Output  
Input/Output  
Port F GPIO—This General Purpose I/O (GPIO) pin can be individually  
programmed as input or output.  
SPI Master In/Slave Out (MISO)—This serial data pin is an input to a master  
device and an output from a slave device. The MISO line of a slave device is  
placed in the high-impedance state if the slave device is not selected.  
Port F GPIO—This General Purpose I/O (GPIO) pin can be individually  
(GPIOF6)  
Input/Output  
programmed as input or output.  
After reset, the default state is MISO.  
56F827 Technical Data, Rev. 12  
16  
Freescale Semiconductor  
Signals and Package Information  
Table 2-2 56F827 Signal and Package Information for the 128 Pin LQFP (Continued)  
Signal Name Pin No.  
Type  
Description  
SS  
99  
Input/Output  
SPI Slave Select—In master mode, this pin is used to arbitrate multiple  
masters. In slave mode, this pin is used to select the slave.  
(GPIOF7)  
Input/Output  
Port F GPIO—This General Purpose I/O (GPIO) pin can be individually  
programmed as input or output.  
After reset, the default state is SS.  
TXD0  
108  
Output  
Transmit Data (TXD0)—transmit data output  
(SCLK0)  
Input/Output  
SPI Serial Clock—In master mode, this pin serves as an output, clocking  
slaved listeners. In slave mode, this pin serves as the data clock input.  
After reset, the default state is SCI output.  
RXD0  
107  
106  
Input  
Receive Data (RXD0)—receive data input  
(MOSI0)  
Input/Output  
SPI Master Out/Slave In—This serial data pin is an input to a master device  
and an output from a slave device. The MISO line of a slave device is placed  
in the high-impedance state if the slave device is not selected.  
TXD1  
Output  
Transmit Data (TXD1)—transmit data output  
(MISO0)  
Input/Output  
SPI Master In/Slave Out—This serial data pin is an output to a master device  
and an input from a slave device. The master device places data on the MOSI  
line one half-cycle before the clock edge the slave device uses to latch the  
data.  
After reset, the default state is SCI input.  
RXD1  
(SS0)  
105  
Input  
(Schmitt)  
Receive Data (RXD1)— receive data input  
Input  
SPI Slave Select—In master mode, this pin is used to arbitrate multiple  
masters. In slave mode, this pin is used to select the slave.  
After reset, the default state is SCI input.  
TXD2  
104  
103  
Output  
Transmit Data (TXD2)—transmit data output  
(GPIOC6)  
Input/Output  
Port C GPIO—This General Purpose I/O (GPIO) pin can be individually  
programmed as input or output.  
After reset, the default state is GPIO output.  
RXD2  
Input/Output  
Input/Output  
Receive Data (RXD2)— receive data input  
(GPIOC7)  
Port C GPIO—This General Purpose I/O (GPIO) pin can be individually  
programmed as input or output.  
After reset, the default state is GPIO input.  
56F827 Technical Data, Rev. 12  
Freescale Semiconductor  
17  
Table 2-2 56F827 Signal and Package Information for the 128 Pin LQFP (Continued)  
Signal Name Pin No.  
Type  
Description  
PCS2  
PCS3  
PCS4  
PCS5  
PCS6  
PCS7  
ANA0  
ANA1  
ANA2  
ANA3  
ANA4  
ANA5  
ANA6  
ANA7  
ANA8  
ANA9  
VREFN  
84  
85  
86  
87  
88  
89  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
66  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input  
Programmable Chip Select - PCS 2-7 is asserted low for external peripheral  
chip select.  
ANA09—Analog inputs to ADC  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
ADC Reference—This pin is connected to the negative side of the ADC input  
range. This pin requires a 0.1μF ceramic capacitor to VSSA and a start-up time  
of 25ms, prior to beginning conversions.  
VREFP  
65  
68  
Input  
Input  
ADC Reference—This pin is connected to the positive side of the ADC input  
range. This pin requires a 0.1μF ceramic capacitor to VSSA and a start-up time  
of 25ms, prior to beginning conversions.  
VREFMID  
ADC Reference—This pin isconnected to the center of the ADC input range.  
This pin requires a 0.1μF ceramic capacitor to VSSA and a start-up time of  
25ms, prior to beginning conversions.  
VREFLO  
VREFHI  
IRQA  
64  
67  
40  
Input  
Input  
ADC Reference—These pins are Negative Reference for ADC and are  
generally connected to a VSSA  
.
ADC Reference—These pins are Positive Reference for ADC and are  
generally connected to a 3.3V Analog (VDDA_ADC) supply.  
Input  
(Schmitt)  
External Interrupt Request A—The IRQA input is a synchronized external  
interrupt request that indicates that an external device is requesting service. It  
can be programmed to be level-sensitive or negative-edge-triggered. If  
level-sensitive triggering is selected, an external pull-up resistor is required for  
wired-OR operation.  
If the processor is in the Stop state and IRQA is asserted, the processor will  
exit the Stop state.  
56F827 Technical Data, Rev. 12  
18  
Freescale Semiconductor  
Signals and Package Information  
Table 2-2 56F827 Signal and Package Information for the 128 Pin LQFP (Continued)  
Signal Name Pin No.  
Type  
Description  
IRQB  
49  
Input  
(Schmitt)  
External Interrupt Request B—The IRQB input is an external interrupt  
request that indicates that an external device is requesting service. It can be  
programmed to be level-sensitive or negative-edge-triggered. If level-sensitive  
triggering is selected, an external pull-up resistor is required for wired-OR  
operation.  
RESET  
42  
Input  
(Schmitt)  
Reset—This input is a direct hardware reset on the processor. When RESET  
is asserted low, the device is initialized and placed in the Reset state. A  
Schmitt trigger input is used for noise immunity. When the RESET pin is  
deasserted, the initial chip operating mode is latched from the external boot  
pin. The internal reset signal will be deasserted synchronous with the internal  
clocks, after a fixed number of internal clocks.  
To ensure complete hardware reset, RESET and TRST should be asserted  
together. The only exception occurs in a debugging environment when a  
hardware device reset is required and it is necessary not to reset the  
OnCE/JTAG module. In this case, assert RESET, but do not assert TRST.  
EXTBOOT  
39  
Input  
External Boot—This input is tied to VDD to force device to boot from off-chip  
(Schmitt)  
memory. Otherwise, it is tied to VSS  
.
56F827 Technical Data, Rev. 12  
Freescale Semiconductor  
19  
Part 3 Specifications  
3.1 General Characteristics  
The 56F827 is fabricated in high-density CMOS with 5V-tolerant TTL-compatible digital inputs. The term  
“5V-tolerant” refers to the capability of an I/O pin, built on a 3.3V-compatible process technology, to  
withstand a voltage up to 5.5V without damaging the device. Many systems have a mixture of devices  
designed for 3.3V and 5V power supplies. In such systems, a bus may carry both 3.3V- and 5V-compatible  
I/O voltage levels. A standard 3.3V I/O is designed to receive a maximum voltage of 3.3V ± 10% during  
normal operation without causing damage. This 5V-tolerant capability, therefore, offers the power savings  
of 3.3V I/O levels while being able to receive 5V levels without being damaged.  
Absolute maximum ratings given in Table 3-1 are stress ratings only, and functional operation at the  
maximum is not guaranteed. Stress beyond these ratings may affect device reliability or cause permanent  
damage to the device.  
The 56F827 DC/AC electrical specifications are preliminary and are from design simulations. These  
specifications may not be fully tested or guaranteed at this early stage of the product life cycle. Finalized  
specifications will be published after complete characterization and device qualifications have been  
completed.  
CAUTION  
This device contains protective circuitry to guard against  
damage due to high static voltage or electrical fields.  
However, normal precautions are advised to avoid  
application of any voltages higher than maximum-rated  
voltages to this high-impedance circuit. Reliability of  
operation is enhanced if unused inputs are tied to an  
appropriate voltage level.  
56F827 Technical Data, Rev. 12  
20  
Freescale Semiconductor  
General Characteristics  
Table 3-1 Absolute Maximum Ratings  
Characteristic  
Supply voltage, core  
Symbol  
Min  
Max  
Unit  
1
VSS - 0.3  
VSS + 3.0  
V
V
VDD  
2
VSSIO - 0.3  
VSSA - 0.3  
VSSIO + 4.0  
VSSA + 4.0  
Supply voltage, IO  
VDDIO  
2
Supply voltage, Analog  
Supply voltage, ADC  
VDDA  
VSSA_ADC-0.3  
VSSA_ADC+0.3  
VDDA_ADC  
Digital input voltages  
Analog input voltages (XTAL, EXTAL)  
Analog input voltages (ANA0-7, VREF)  
VIN  
VINA  
VSSIO - 0.3  
V
SSIO + 5.5  
V
VSSA - 0.3  
VDDA + 0.3  
VIN_ADC  
VSSA_ADC-0.3  
VSSA_ADC+0.3  
Voltage difference VDD to VDD_IO, VDDA  
Voltage difference VSS to VSS _IO, VSSA  
ΔVDD  
ΔVSS  
I
- 0.3  
- 0.3  
0.3  
0.3  
10  
V
V
Current drain per pin excluding VDD, VSS, VDDA  
,
mA  
VSSA,VDDIO, VSSIO  
Junction temperature  
TJ  
150  
150  
°C  
°C  
Storage temperature range  
1. VDD must not exceed VDDIO  
TSTG  
-55  
2. VDDIO and VDDA must not differ by more that 0.5V  
Table 3-2 Recommended Operating Conditions  
Characteristic  
Supply voltage, core  
Symbol  
VDD  
Min  
2.5  
Typ  
2.5  
3.3  
-
Max  
2.75  
Unit  
V
V
Supply Voltage, IO and analog  
V
DDIO,VDDA  
ΔVDD  
3.0  
3.6  
Voltage difference VDD to VDD_IO, VDDA  
Voltage difference VSS to VSS _IO, VSSA  
-0.1  
-0.1  
2.7  
0.1  
V
ΔVSS  
-
0.1  
V
ADC reference voltage, positive  
ADC reference voltage, negative  
Ambient operating temperature  
VREFHI  
VREFLO  
TA  
VDD_ADC  
VREFHI  
85  
V
VSSA  
–40  
V
°C  
56F827 Technical Data, Rev. 12  
Freescale Semiconductor  
21  
6
Table 3-3 Thermal Characteristics  
Value  
128-pin LQFP  
50.8  
Characteristic  
Symbol  
Unit  
Notes  
Comments  
Junction to ambient  
RθJA  
°C/W  
2
Natural convection  
Junction to ambient (@1m/sec)  
RθJMA  
46.5  
43.9  
°C/W  
°C/W  
2
Junction to ambient  
Natural convection  
Four layer board  
(2s2p)  
RθJMA  
(2s2p)  
1,2  
Junction to ambient (@1m/sec)  
Four layer board  
(2s2p)  
RθJMA  
41.7  
°C/W  
1,2  
Junction to case  
RθJC  
ΨJT  
13.9  
1.2  
°C/W  
°C/W  
W
3
4
Junction to center of case  
I/O pin power dissipation  
Power dissipation  
P I/O  
P D  
User Determined  
P D = (IDD x VDD + P I/O  
(TJ - TA) /RθJA  
)
W
Junction to center of case  
PDMAX  
W
7
Notes:  
1. Theta-JA determined on 2s2p test boards is frequently lower than would be observed in an application.  
Determined on 2s2p thermal test board.  
2. Junction to ambient thermal resistance, Theta-JA (R ) was simulated to be equivalent to the JEDEC  
θJA  
specification JESD51-2 in a horizontal configuration in natural convection. Theta-JA was also simulated on  
a thermal test board with two internal planes (2s2p where s is the number of signal layers and p is the number  
of planes) per JESD51-6 and JESD51-7. The correct name for Theta-JA for forced convection or with the  
non-single layer boards is Theta-JMA.  
3. Junction to case thermal resistance, Theta-JC (R ), was simulated to be equivalent to the measured values  
θJC  
using the cold plate technique with the cold plate temperature used as the "case" temperature. The basic cold  
plate measurement technique is described by MIL-STD 883D, Method 1012.1. This is the correct thermal  
metric to use to calculate thermal performance when the package is being used with a heat sink.  
4. Thermal Characterization Parameter, Psi-JT (Ψ ), is the "resistance" from junction to reference point  
JT  
thermocouple on top center of case as defined in JESD51-2. Ψ is a useful value to use to estimate junction  
JT  
temperature in steady state customer environments.  
5. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and  
board thermal resistance.  
6. See Section 5.1 from more details on thermal design considerations.  
7. TJ = Junction Temperature  
TA = Ambient Temperature  
56F827 Technical Data, Rev. 12  
22  
Freescale Semiconductor  
DC Electrical Characteristics  
3.2 DC Electrical Characteristics  
Table 3-4 DC Electrical Characteristics  
Operating Conditions: VSSIO=VSS = VSSA = 0V, VDDA =VDDIO=3.0–3.6V, VDD = 2.25–2.75V, TA = –40° to +85°C, CL 50pF, fop = 80MHz  
Characteristic  
Input high voltage (XTAL/EXTAL)  
Symbol  
VIHC  
VILC  
VIHS  
VILS  
VIH  
Min  
2.25  
0
Typ  
30  
Max  
3.6  
0.5  
5.5  
0.8  
5.5  
0.8  
1
Unit  
V
Input low voltage (XTAL/EXTAL)  
V
Input high voltage (Schmitt trigger inputs)1  
2.2  
-0.3  
2.0  
-0.3  
-1  
V
Input low voltage (Schmitt trigger inputs)2  
Input high voltage (all other digital inputs)  
V
V
Input low voltage (all other digital inputs)  
VIL  
V
Input current high (pull-up/pull-down resistors disabled, VIN=VDD  
)
IIH  
μA  
μA  
μA  
μA  
μA  
μA  
KΩ  
μA  
μA  
μA  
Input current low (pull-up/pull-down resistors disabled, VIN=VSS  
Input current high (with pull-up resistor, VIN=VDD  
Input current low (with pull-up resistor, VIN=VSS  
Input current high (with pull-down resistor, VIN=VDD  
)
IIL  
-1  
1
)
IIHPU  
IILPU  
IIHPD  
IILPD  
-0  
1
)
-210  
20  
-50  
180  
1
)
Input current low (with pull-down resistor, VIN=VSS  
Nominal pull-up or pull-down resistor value  
Output tri-state current low  
)
-1  
R
PU, RPD  
IOZL  
-10  
-10  
-15  
10  
10  
15  
Output tri-state current high  
Input current high (analog inputs, VIN=VDDA  
IOZH  
2
IIHA  
)
2
IILA  
-15  
15  
μA  
Input current low (analog inputs, VIN=VSSA  
)
Output High Voltage (at IOH  
)
VOH  
VOL  
IOH  
VDD – 0.7  
0.4  
V
Output Low Voltage (at IOL  
Output source current  
Output sink current  
)
4
V
mA  
mA  
mA  
IOL  
4
PWM pin output source current3  
IOHP  
10  
56F827 Technical Data, Rev. 12  
Freescale Semiconductor  
23  
Table 3-4 DC Electrical Characteristics (Continued)  
Operating Conditions: VSSIO=VSS = VSSA = 0V, VDDA =VDDIO=3.0–3.6V, VDD = 2.25–2.75V, TA = –40° to +85°C, CL 50pF, fop = 80MHz  
Characteristic  
PWM pin output sink current4  
Symbol  
IOLP  
Min  
16  
Typ  
Max  
Unit  
mA  
pF  
Input capacitance  
Output capacitance  
CIN  
8
COUT  
12  
pF  
5
VDD supply current  
IDDT  
Run 6  
60  
35  
90  
50  
mA  
mA  
Wait7  
Stop  
6
15  
mA  
V
Low Voltage Interrupt, VDDIO power supply8  
Low Voltage Interrupt, VDD power supply9  
Power-on Reset10  
VEIO  
VEIC  
2.4  
2.7  
3.0  
2.0  
2.2  
1.7  
2.4  
2.0  
V
V
VPOR  
1. Schmitt Trigger inputs are: EXTBOOT, IRQA, IRQB, RESET, TCS, TCK, TRST, TMS, TDI, and RXD1.  
2. Analog inputs are: ANA[0:7], XTAL and EXTAL. Specification assumes ADC is not sampling.  
3. PWM pin output source current measured with 50% duty cycle.  
4. PWM pin output sink current measured with 50% duty cycle.  
5. IDDT = IDD + IDDA (Total supply current for VDD + VDDA  
)
6. Run (operating) IDD measured using 4MHz clock source. All inputs 0.2V from rail; outputs unloaded. All ports configured as inputs;  
measured with all modules enabled.  
7. Wait IDD measured using external square wave clock source (fosc = 4MHz) into XTAL; all inputs 0.2V from rail; no DC loads; less  
than 50pF on all outputs. CL = 20pF on EXTAL; all ports configured as inputs; EXTAL capacitance linearly affects wait IDD; measured  
with PLL enabled.  
8. This low-voltage interrupt monitors the VDDIO power supply. If VDDIO drops below VEIO, an interrupt is generated. Functionality of  
the device is guaranteed under transient conditions when VDDIO >VEIO (between the minimum specified VDDIO and the point when  
the VEIO interrupt is generated).  
9. This low-voltage interrupt monitors the VDD power supply. If VDDIO drops below VEIC, an interrupt is generated. Functionality of  
the device is guaranteed under transient conditions when VDD >VEIC (between the minimum specified VDD and the point when the  
V
EIC interrupt is generated).  
10. Poweron reset occurs whenever the VDD power supply drops below VPOR. While power is ramping up, this signal remains active  
as long as VDD is below VPOR, no matter how long the ramp-up rate is.  
56F827 Technical Data, Rev. 12  
24  
Freescale Semiconductor  
Supply Voltage Sequencing and Separation Cautions  
100  
80  
IDD Analog  
IDD Total  
IDD Digital  
60  
40  
20  
0
10  
20  
60  
70  
50  
30  
80  
40  
Freq. (MHz)  
Figure 3-1 Maximum Run I vs. Frequency (see Note 6. in Table 3-4)  
DD  
3.3 Supply Voltage Sequencing and Separation Cautions  
Figure 3-2 shows two situations to avoid in sequencing the V and V  
V
supplies.  
DD  
DDIO, DDA  
3.3V  
VDDIO, VDDA  
2
Supplies Stable  
2.5V  
VDD  
1
0
Time  
Notes: 1. VDD rising before VDDIO, VDDA  
2. VDDIO, VDDA rising much faster than VDD  
Figure 3-2 Supply Voltage Sequencing and Separation Cautions  
56F827 Technical Data, Rev. 12  
Freescale Semiconductor  
25  
V
should not be allowed to rise early (1). This is usually avoided by running the regulator for the V  
DD  
DD  
supply (2.5V) from the voltage generated by the 3.3V V  
supply, see Figure 3-3. This keeps V from  
DDIO  
DD  
rising faster than V  
.
DDIO  
V
should not rise so late that a large voltage difference is allowed between the two supplies (2).  
DD  
Typically, this situation is avoided by using external discrete diodes in series between supplies, as shown  
in Figure 3-3. The series diodes forward bias when the difference between V and V reaches  
DDIO  
DD  
approximately 1.4, causing V to rise as V  
ramps up. When the V regulator begins proper  
DD  
DDIO  
DD  
operation, the difference between supplies will typically be 0.8V and conduction through the diode chain  
reduces to essentially leakage current. During supply sequencing, the following general relationship  
should be adhered to:  
V
> V > (V  
- 1.4V)  
DDIO  
DD  
DDIO  
In practice, V  
is typically connected directly to V  
with some filtering.  
DDA  
DDIO  
VDDIO, VDDA  
3.3V  
Regulator  
Supply  
VDD  
2.5V  
Regulator  
Figure 3-3 Example Circuit to Control Supply Sequencing  
3.4 AC Electrical Characteristics  
Timing waveforms in Section 3.4 are tested using the VIL and VIH levels specified in the DC Characteristics  
table. In Figure 3-4 the levels of VIH and VIL for an input signal are shown.  
Pulse Width  
Low  
VIL  
High  
VIH  
90%  
Input Signal  
50%  
Midpoint1  
10%  
Fall Time  
Note: The midpoint is VIL + (VIH – VIL)/2.  
Rise Time  
Figure 3-4 Input Signal Measurement References  
Figure 3-5 shows the definitions of the following signal states:  
Active state, when a bus or signal is driven, and enters a low impedance state  
Tri-stated, when a bus or signal is placed in a high impedance state  
Data Valid state, when a signal level has reached VOL or VOH  
Data Invalid state, when a signal level is in transition between VOL and VOH  
56F827 Technical Data, Rev. 12  
26  
Freescale Semiconductor  
Flash Memory Characteristics  
Data2 Valid  
Data2  
Data1 Valid  
Data1  
Data3 Valid  
Data3  
Data  
Tri-stated  
Data Invalid State  
Data Active  
Data Active  
Figure 3-5 Signal States  
3.5 Flash Memory Characteristics  
Table 3-5 Flash Memory Truth Table  
XE1  
YE2  
SE3  
OE4  
PROG5  
ERASE6  
MAS17  
NVSTR8  
Mode  
Standby  
Read  
L
L
H
H
L
L
H
L
L
L
L
H
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
H
H
H
H
Word Program  
Page Erase  
Mass Erase  
L
H
H
H
H
H
L
1. X address enable, all rows are disabled when XE = 0  
2. Y address enable, YMUX is disabled when YE = 0  
3. Sense amplifier enable  
4. Output enable, tri-state Flash data out bus when OE = 0  
5. Defines program cycle  
6. Defines erase cycle  
7. Defines mass erase cycle, erase whole block  
8. Defines non-volatile store cycle  
Table 3-6 IFREN Truth Table  
Mode  
IFREN = 1  
IFREN = 0  
Read  
Read information block  
Program information block  
Erase information block  
Erase both block  
Read main memory block  
Program main memory block  
Erase main memory block  
Erase main memory block  
Word program  
Page erase  
Mass erase  
56F827 Technical Data, Rev. 12  
Freescale Semiconductor  
27  
Table 3-7 Flash Timing Parameters  
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6V, TA = –40° to +85°C, CL 50pF  
Characteristic  
Program time  
Symbol  
Min  
20  
Typ  
Max  
Unit  
us  
Figure  
Figure 3-6  
Figure 3-7  
Figure 3-8  
Tprog*  
Terase*  
Tme*  
Erase time  
20  
ms  
Mass erase time  
100  
10,000  
10  
ms  
Endurance1  
ECYC  
20,000  
30  
cycles  
years  
Data Retention1  
DRET  
The following parameters should only be used in the Manual Word Programming Mode  
PROG/ERASE to NVSTR set  
up time  
5
us  
Figure 3-6, Figure 3-7,  
Tnvs*  
Figure 3-8  
NVSTR hold time  
5
100  
10  
1
us  
us  
us  
us  
Figure 3-6, Figure 3-7  
Figure 3-8  
Tnvh*  
Tnvh1*  
Tpgs*  
Trcv*  
NVSTR hold time (mass erase)  
NVSTR to program set up time  
Recovery time  
Figure 3-6,  
Figure 3-6,  
Figure 3-7,Figure 3-8  
Cumulative program  
HV period2  
3
ms  
Figure 3-6,  
Thv  
Program hold time3  
Figure 3-6,  
Figure 3-6,  
Figure 3-6,  
Tpgh  
Tads  
Tadh  
Address/data set up time3  
Address/data hold time3  
1. One cycle is equal to an erase program and read.  
2. Thv is the cumulative high voltage programming time to the same row before next erase. The same address cannot be  
programmed twice before next erase.  
3. Parameters are guaranteed by design in smart programming mode and must be one cycle or greater.  
*The Flash interface unit provides registers for the control of these parameters.  
56F827 Technical Data, Rev. 12  
28  
Freescale Semiconductor  
Flash Memory Characteristics  
IFREN  
XADR  
XE  
Tadh  
YADR  
YE  
DIN  
Tads  
PROG  
NVSTR  
Tnvs  
Tprog  
Tpgh  
Tpgs  
Tnvh  
Trcv  
Thv  
Figure 3-6 Flash Program Cycle  
IFREN  
XADR  
XE  
YE=SE=OE=MAS1=0  
ERASE  
NVSTR  
Tnvs  
Tnvh  
Trcv  
Terase  
Figure 3-7 Flash Erase Cycle  
56F827 Technical Data, Rev. 12  
Freescale Semiconductor  
29  
IFREN  
XADR  
XE  
MAS1  
YE=SE=OE=0  
ERASE  
NVSTR  
Tnvs  
Tnvh1  
Trcv  
Tme  
Figure 3-8 Flash Mass Erase Cycle  
3.6 External Clock Operation  
The 56F827 system clock can be derived from a crystal or an external system clock signal. To generate a  
reference frequency using the internal oscillator, a reference crystal must be connected between the  
EXTAL and XTAL pins.  
3.6.1  
Crystal Oscillator  
The internal oscillator is also designed to interface with a parallel-resonant crystal resonator in the  
frequency range specified for the external crystal in Table 3-8. A recommended crystal oscillator circuit  
is shown in Figure 3-9. Follow the crystal supplier’s recommendations when selecting a crystal, because  
crystal parameters determine the component values required to provide maximum stability and reliable  
start-up. The crystal and associated components should be mounted as close as possible to the EXTAL  
and XTAL pins to minimize output distortion and start-up stabilization time.The internal 56F82x  
oscillator circuitry is designed to have no external load capacitors present. As shown in Figure 3-9, no  
external load capacitors should be used.  
The 56F80x components internally are modeled as a parallel resonant oscillator circuit to provide a  
capacitive load on each of the oscillator pins (XTAL and EXTAL) of 10pF to 13pF over temperature and  
process variations. Using a typical value of internal capacitance on these pins of 12pF and a value of 3pF  
56F827 Technical Data, Rev. 12  
30  
Freescale Semiconductor  
External Clock Operation  
as a typical circuit board trace capacitance the parallel load capacitance presented to the crystal is 9pF as  
determined by the following equation:  
CL1 * CL2  
CL1 + CL2  
12 * 12  
12 + 12  
CL =  
+ Cs =  
+ 3 = 6 + 3 = 9pF  
This is the value load capacitance that should be used when selecting a crystal and determining the actual  
frequency of operation of the crystal oscillator circuit.  
Recommended External Crystal  
Parameters:  
Rz = 1 to 3MΩ  
EXTAL XTAL  
Rz  
fc = 4MHz (optimized for 4MHz)  
fc  
Figure 3-9 Connecting to a Crystal Oscillator Circuit  
3.6.2  
Ceramic Resonator  
It is also possible to drive the internal oscillator with a ceramic resonator, assuming the overall system  
design can tolerate the reduced signal integrity. A typical ceramic resonator circuit is shown in  
Figure 3-10. The resonator and components should be mounted as close as possible to the EXTAL and  
XTAL pins. The internal 56F82x oscillator circuitry is designed to have no external load capacitors  
present. As shown in Figure 3-9, no external load capacitors should be used.  
Recommended Ceramic Resonator  
Parameters:  
Rz = 1 to 3 MΩ  
EXTAL XTAL  
Rz  
fc = 4MHz (optimized for 4MHz)  
fc  
Figure 3-10 Connecting a Ceramic Resonator  
Note: Freescale recommends only two terminal ceramic resonators vs. three terminal resonators  
(which contain an internal bypass capacitor to ground).  
56F827 Technical Data, Rev. 12  
Freescale Semiconductor  
31  
3.6.3  
External Clock Source  
The recommended method of connecting an external clock is given in Figure 3-11. The external clock  
source is connected to XTAL and the EXTAL pin is held V  
/2.  
DDA  
56F827  
XTAL  
EXTAL  
V
/2  
External  
Clock  
DDA  
Figure 3-11 Connecting an External Clock Signal  
Table 3-8 External Clock Operation Timing Requirements  
Operating Conditions: VSSIO=VSS = VSSA = 0V, VDDA =VDDIO=3.0–3.6V, VDD = 2.25–2.75V, TA = –40° to +85°C, CL 50pF, fop = 80MHz  
Characteristic  
Symbol  
fosc  
Min  
0
Typ  
4
Max  
Unit  
MHz  
ns  
Frequency of operation (external clock driver)1  
Clock Pulse Width3, 4  
802  
tPW  
6.25  
1. See Figure 3-11 for details on using the recommended connection of an external clock driver.  
2. When using Time-of-Day (TOD), maximum external frequency is 6MHz.  
3. The high or low pulse width must be no smaller than 6.25ns or the chip will not function.  
4. Parameters listed are guaranteed by design.  
VIH  
External  
Clock  
90%  
50%  
10%  
90%  
50%  
10%  
tPW  
tPW  
VIL  
Note: The midpoint is VIL + (VIH – VIL)/2.  
Figure 3-12 External Clock Timing  
56F827 Technical Data, Rev. 12  
32  
Freescale Semiconductor  
External Bus Asynchronous Timing  
3.6.4  
Phase Locked Loop Timing  
Table 3-9 PLL Timing  
Operating Conditions: VSSIO=VSS = VSSA = 0V, VDDA =VDDIO=3.0–3.6V, VDD = 2.25–2.75V, TA = –40° to +85°C, CL 50pF, fop = 80MHz  
Characteristic  
Symbol  
fosc  
Min  
2
Typ  
4
Max  
6
Unit  
MHz  
MHz  
ms  
External reference crystal frequency for the PLL1  
PLL output frequency2  
fout/2  
tplls  
40  
1
110  
10  
PLL stabilization time 3-40o to +85oC  
1. An externally supplied reference clock should be as free as possible from any phase jitter for the PLL to work  
correctly. The PLL is optimized for 4MHz input crystal.  
2. ZCLK may not exceed 80MHz. For additional information on ZCLK and fout/2, please refer to the OCCS chapter in the  
User Manual. ZCLK = fop  
3. This is the minimum time required after the PLL set-up is changed to ensure reliable operation.  
3.7 External Bus Asynchronous Timing  
1, 2  
Table 3-10 External Bus Asynchronous Timing  
Operating Conditions: VSSIO=VSS = VSSA = 0V, VDDA =VDDIO=3.0–3.6V, VDD = 2.25–2.75V, TA = –40° to +85°C, CL 50pF, fop = 80MHz  
Characteristic  
Symbol  
Unit  
Min  
Max  
Address Valid to WR Asserted  
tAWR  
tWR  
6.5  
ns  
WR Width Asserted  
Wait states = 0  
Wait states > 0  
7.5  
ns  
ns  
(T*WS) + 7.5  
WR Asserted to D0–D15 Out Valid  
tWRD  
tDOH  
tDOS  
T + 4.2  
ns  
ns  
Data Out Hold Time from WR Deasserted  
4.8  
Data Out Set Up Time to WR Deasserted  
Wait states = 0  
Wait states > 0  
2.2  
ns  
ns  
(T*WS) + 6.4  
RD Deasserted to Address Not Valid  
tRDA  
0
ns  
Address Valid to RD Deasserted  
Wait states = 0  
Wait states > 0  
tARDD  
18.7  
(T*WS) + 18.7  
ns  
ns  
56F827 Technical Data, Rev. 12  
Freescale Semiconductor  
33  
1, 2  
Table 3-10 External Bus Asynchronous Timing  
(Continued)  
Operating Conditions: VSSIO=VSS = VSSA = 0V, VDDA =VDDIO=3.0–3.6V, VDD = 2.25–2.75V, TA = –40° to +85°C, CL 50pF, fop = 80MHz  
Characteristic  
Symbol  
Unit  
Min  
Max  
Input Data Hold to RD Deasserted  
tDRD  
tRD  
0
ns  
RD Assertion Width  
Wait states = 0  
Wait states > 0  
19  
ns  
ns  
(T*WS) + 19  
Address Valid to Output Data Valid  
Wait states = 0  
Wait states > 0  
tAD  
1
ns  
ns  
(T*WS) + 1  
Address Valid to RD Asserted  
tARDA  
tRDD  
-4.4  
ns  
RD Asserted to Input Data Valid  
Wait states = 0  
Wait states > 0  
2.4  
ns  
ns  
(T*WS) + 2.4  
WR Deasserted to RD Asserted  
RD Deasserted to RD Asserted  
WR Deasserted to WR Asserted  
RD Deasserted to WR Asserted  
tWRRD  
tRDRD  
tWRWR  
tRDWR  
6.8  
0
ns  
ns  
ns  
ns  
14.1  
12.8  
1. Timing is both wait state and frequency dependent. In the formulas listed, WS = the number of wait states and  
T = Clock Period. For 80MHz operation, T = 12.5ns.  
2. Parameters listed are guaranteed by design.  
To calculate the required access time for an external memory for any frequency < 80MHz, use this formula:  
Top = Clock period @ desired operating frequency  
WS = Number of wait states  
Memory Access Time = (Top*WS) + (Top- 11.5)  
56F827 Technical Data, Rev. 12  
34  
Freescale Semiconductor  
External Bus Asynchronous Timing  
A0–A15,  
PS, DS  
tARDD  
(See Note)  
tRDA  
tARDA  
tRDRD  
tRD  
tAWR  
tWRWR  
RD  
tWRRD  
tWR  
tRDWR  
WR  
tRDD  
tAD  
tDOH  
tWRD  
tDRD  
tDOS  
Data Out  
Data In  
D0–D15  
Note: During read-modify-write instructions and internal instructions, the address lines do not change state.  
Figure 3-13 External Bus Asynchronous Timing  
56F827 Technical Data, Rev. 12  
Freescale Semiconductor  
35  
3.8 Reset, Stop, Wait, Mode Select, and Interrupt Timing  
1, 5  
Table 3-11 Reset, Stop, Wait, Mode Select, and Interrupt Timing  
Operating Conditions: VSSIO=VSS = VSSA = 0V, VDDA =VDDIO=3.0–3.6V, VDD = 2.25–2.75V, TA = –40° to +85°C, CL 50pF, fop = 80MHz  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
Figure 3-14  
RESET Assertion to Address, Data and Control  
Signals High Impedance  
tRAZ  
21  
ns  
Minimum RESET Assertion Duration2  
OMR Bit 6 = 0  
OMR Bit 6 = 1  
tRA  
Figure 3-14  
275,000T  
128T  
ns  
ns  
RESET Deassertion to First External Address Output  
Edge-sensitive Interrupt Request Width  
tRDA  
tIRW  
tIDM  
33T  
1.5T  
15T  
34T  
ns  
ns  
ns  
Figure 3-14  
Figure 3-15  
Figure 3-16  
IRQA, IRQB Assertion to External Data Memory  
Access Out Valid, caused by first instruction execution  
in the interrupt service routine  
IRQA, IRQB Assertion to General Purpose Output  
Valid, caused by first instruction execution in the  
interrupt service routine  
tIG  
16T  
ns  
Figure 3-16  
Figure 3-17  
IRQA Low to First Valid Interrupt Vector Address Out  
recovery from Wait State3  
tIRI  
13T  
2T  
ns  
ns  
IRQA Width Assertion to Recover from Stop State4  
tIW  
tIF  
Figure 3-18  
Figure 3-18  
Delay from IRQA Assertion to Fetch of first instruction  
(exiting Stop)  
OMR Bit 6 = 0  
OMR Bit 6 = 1  
275,000T  
12T  
ns  
ns  
Duration for Level Sensitive IRQA Assertion to Cause  
the Fetch of First IRQA Interrupt Instruction (exiting  
Stop)  
OMR Bit 6 = 0  
OMR Bit 6 = 1  
tIRQ  
Figure 3-19  
Figure 3-19  
275,000T  
12T  
ns  
ns  
Delay from Level Sensitive IRQA Assertion to First  
Interrupt Vector Address Out Valid (exiting Stop)  
OMR Bit 6 = 0  
tII  
275,000T  
12T  
ns  
ns  
OMR Bit 6 = 1  
1. In the formulas, T = clock cycle. For an operating frequency of 80MHz, T = 12.5ns.  
2. Circuit stabilization delay is required during reset when using an external clock or crystal oscillator in two cases:  
• After power-on reset  
• When recovering from Stop state  
3. The minimum is specified for the duration of an edge-sensitive IRQA interrupt required to recover from the Stop state. This is not  
the minimum required so that the IRQA interrupt is accepted.  
4. The interrupt instruction fetch is visible on the pins only in Mode 3.  
5. Parameters listed are guaranteed by design.  
56F827 Technical Data, Rev. 12  
36  
Freescale Semiconductor  
Reset, Stop, Wait, Mode Select, and Interrupt Timing  
RESET  
tRA  
tRAZ  
tRDA  
A0–A15,  
D0–D15  
First Fetch  
PS, DS,  
RD, WR  
First Fetch  
Figure 3-14 Asynchronous Reset Timing  
IRQA,  
IRQB  
tIRW  
Figure 3-15 External Interrupt Timing (Negative-Edge-Sensitive)  
A0–A15,  
PS, DS,  
RD, WR  
First Interrupt Instruction Execution  
tIDM  
IRQA,  
IRQB  
a) First Interrupt Instruction Execution  
General  
Purpose  
I/O Pin  
tIG  
IRQA,  
IRQB  
b) General Purpose I/O  
Figure 3-16 External Level-Sensitive Interrupt Timing  
56F827 Technical Data, Rev. 12  
Freescale Semiconductor  
37  
IRQA,  
IRQB  
tIRI  
A0–A15,  
PS, DS,  
RD, WR  
First Interrupt Vector  
Instruction Fetch  
Figure 3-17 Interrupt from Wait State Timing  
tIW  
IRQA  
tIF  
A0–A15,  
PS, DS,  
RD, WR  
First Instruction Fetch  
Not IRQA Interrupt Vector  
Figure 3-18 Recovery from Stop State Using Asynchronous Interrupt Timing  
tIRQ  
IRQA  
tII  
A0–A15  
PS, DS,  
RD, WR  
First IRQA Interrupt  
Instruction Fetch  
Figure 3-19 Recovery from Stop State Using IRQA Interrupt Service  
56F827 Technical Data, Rev. 12  
38  
Freescale Semiconductor  
Serial Peripheral Interface (SPI) Timing  
3.9 Serial Peripheral Interface (SPI) Timing  
1
Table 3-12 SPI Timing  
Operating Conditions: VSSIO=VSS = VSSA = 0V, VDDA =VDDIO=3.0–3.6V, VDD = 2.25–2.75V, TA = –40° to +85°C, CL 50pF, fop = 80MHz  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
Cycle time  
Master  
Slave  
tC  
Figures  
3-20, 3-21,  
3-22, 3-23  
50  
25  
ns  
ns  
Enable lead time  
Master  
Slave  
tELD  
tELG  
tCH  
tCL  
Figure 3-23  
25  
ns  
ns  
Enable lag time  
Master  
Slave  
Figure 3-23  
100  
ns  
ns  
Clock (SCLK) high time  
Master  
Slave  
ns  
ns  
Figures  
3-20, 3-21,  
3-22, 3-23  
24  
12  
Clock (SCLK) low time  
Master  
Slave  
Figures  
3-20, 3-21,  
3-22, 3-23  
24.1  
12  
ns  
ns  
Data set-up time required for inputs  
Master  
Slave  
tDS  
Figures  
3-20, 3-21,  
3-22, 3-23  
20  
0
ns  
ns  
Data hold time required for inputs  
Master  
Slave  
tDH  
Figures  
3-20, 3-21,  
3-22, 3-23  
0
2
ns  
ns  
Access time (time to data active from high-impedance state)  
Slave  
tA  
tD  
Figure 3-23  
4.8  
3.7  
15  
ns  
ns  
Disable time (hold time to high-impedance state)  
Slave  
Figure 3-23  
15.2  
Data Valid for outputs  
Master  
Slave (after enable edge)  
tDV  
Figures  
3-20, 3-21,  
3-22, 3-23  
4.5  
20.4  
ns  
ns  
Data invalid  
Master  
Slave  
tDI  
tR  
tF  
Figures  
3-20, 3-21,  
3-22, 3-23  
0
0
ns  
ns  
Rise time  
Master  
Slave  
Figures  
3-20, 3-21,  
3-22, 3-23  
11.5  
10.0  
ns  
ns  
Fall time  
Master  
Slave  
Figures  
3-20, 3-21,  
3-22, 3-23  
9.7  
9.0  
ns  
ns  
1. Parameters listed are guaranteed by design.  
56F827 Technical Data, Rev. 12  
Freescale Semiconductor  
39  
SS  
(Input)  
SS is held High on master  
tC  
tR  
tF  
tCL  
SCLK (CPOL = 0)  
(Output)  
tCH  
tCL  
tF  
tR  
SCLK (CPOL = 1)  
(Output)  
tDH  
tCH  
tDS  
MISO  
(Input)  
MSB in  
tDI  
Bits 14–1  
LSB in  
tDI(ref)  
tDV  
MOSI  
(Output)  
Master MSB out  
tF  
Bits 14–1  
Master LSB out  
tR  
Figure 3-20 SPI Master Timing (CPHA = 0)  
SS  
(Input)  
SS is held High on master  
tC  
tF  
tR  
tCL  
SCLK (CPOL = 0)  
(Output)  
tCH  
tCL  
tF  
SCLK (CPOL = 1)  
(Output)  
tCH  
tDS  
tDH  
tR  
MISO  
(Input)  
MSB in  
tDI  
Bits 14–1  
LSB in  
tDV  
tDV(ref)  
MOSI  
(Output)  
Master MSB out  
tF  
Bits 14– 1  
Master LSB out  
tR  
Figure 3-21 SPI Master Timing (CPHA = 1)  
56F827 Technical Data, Rev. 12  
40  
Freescale Semiconductor  
Serial Peripheral Interface (SPI) Timing  
SS  
(Input)  
tC  
tF  
tR  
tELG  
tCL  
SCLK (CPOL = 0)  
(Input)  
tCH  
tCL  
tELD  
SCLK (CPOL = 1)  
(Input)  
tF  
tCH  
tA  
tR  
tD  
MISO  
(Output)  
Slave MSB out  
Bits 14–1  
tDV  
Slave LSB out  
tDI  
tDS  
tDI  
tDH  
MOSI  
(Input)  
MSB in  
Bits 14–1  
LSB in  
Figure 3-22 SPI Slave Timing (CPHA = 0)  
SS  
(Input)  
tC  
tF  
tR  
tCL  
SCLK (CPOL = 0)  
(Input)  
tCH  
tELG  
tELD  
tCL  
SCLK (CPOL = 1)  
(Input)  
tDV  
tCH  
tR  
tD  
tF  
tA  
MISO  
(Output)  
Slave MSB out  
Bits 14–1  
tDV  
Slave LSB out  
tDS  
tDI  
tDH  
MOSI  
(Input)  
MSB in  
Bits 14–1  
LSB in  
Figure 3-23 SPI Slave Timing (CPHA = 1)  
56F827 Technical Data, Rev. 12  
Freescale Semiconductor  
41  
3.10 Analog-to-Digital Converter (ADC) Timing  
Table 3-13 ADC Characteristics  
Characteristic  
ADC Input voltage  
Symbol  
Min  
Typ  
Max  
VREFHI  
12  
Unit  
1
VADCIN  
0
V
Resolution  
RES  
INL  
12  
Bits  
Integral Non-Linearity2  
LSB3  
LSB3  
+/- 1  
+/- 3  
+/- 1  
Differential Non-Linearity  
DNL  
+/- 0.4  
GUARANTEED  
Monotonicity  
ADC internal clock4  
Conversion range  
fADIC  
RAD  
tADPU  
tADC  
0.5  
VREFLO  
2.5  
MHz  
V
25  
6
VREFHI  
Power-up time  
ms  
tAIC cycles5  
tAIC cycles5  
Conversion time  
Sample time  
tADS  
1
pF5  
Input capacitance  
CADI  
EGAIN  
VOFFSET  
THD  
0.95  
-60  
57  
5
1.00  
+15  
66  
1.10  
+40  
Gain Error (transfer gain)4  
Offset Voltage4  
mV  
dB  
bit  
Total Harmonic Distortion4  
Effective Number of Bits4  
Spurious Free Dynamic Range4  
ENOB  
SFDR  
SINAD  
IADC  
9.3  
58  
10.5  
70  
dB  
dB  
mA  
μA  
Signal-to-Noise plus Distortion4  
ADC quiescent current  
56  
64  
10  
ADC quiescent current (power  
down bit set high)  
IADCPD  
1
V
REF quiescent current  
IVREF  
1
1
mA  
VREF quiescent current (power  
IVREFPD  
μA  
down bit set high)  
1. VREF must be equal to or less than VDDA and must be greater than 2.7V. For optimal ADC performance, set VREF to  
DDA-0.3V.  
V
56F827 Technical Data, Rev. 12  
42  
Freescale Semiconductor  
Synchronous Serial Interface (SSI) Timing  
2. Measured in 10-90% range.  
3. LSB = Least Significant Bit.  
4. Guaranteed by characterization.  
5. t  
= 1/f  
ADIC  
AIC  
ADC analog input  
1
3
2
4
1. Parasitic capacitance due to package, pin to pin, and pin to package base coupling. (1.8pf)  
2. Parasitic capacitance due to the chip bond pad, ESD protection devices and signal routing. (2.04pf)  
3. Equivalent resistance for the ESD isolation resistor and the channel select mux. (500 ohms)  
4. Sampling capacitor at the sample and hold circuit. Capacitor 4 is normally disconnected from the input and is only  
connected to it at sampling time. (1pf)  
Figure 3-24 Equivalent Analog Input Circuit  
3.11 Synchronous Serial Interface (SSI) Timing  
1
Table 3-14 SSI Master Mode Switching Characteristics  
Operating Conditions: VSSIO=VSS = VSSA = 0V, VDDA =VDDIO=3.0–3.6V, VDD = 2.25–2.75V, TA = –40° to +85°C, CL < 50pF, fop = 80MHz  
Parameter  
Symbol  
fs  
Min  
Typ  
Max  
Units  
MHz  
ns  
102  
STCK frequency  
STCK period3  
tSCKW  
tSCKH  
tSCKL  
100  
504  
STCK high time  
ns  
504  
STCK low time  
ns  
Output clock rise/fall time  
4
ns  
ns  
Delay from STCK high to STFS (bl) high - Master5  
Delay from STCK high to STFS (wl) high - Master5  
Delay from SRCK high to SRFS (bl) high - Master5  
Delay from SRCK high to SRFS (wl) high - Master5  
Delay from STCK high to STFS (bl) low - Master5  
tTFSBHM  
0.1  
0.5  
tTFSWHM  
tRFSBHM  
tRFSWHM  
tTFSBLM  
0.1  
0.6  
0.6  
-1.0  
0.5  
1.3  
1.3  
-0.1  
ns  
ns  
ns  
ns  
56F827 Technical Data, Rev. 12  
Freescale Semiconductor  
43  
1
Table 3-14 SSI Master Mode Switching Characteristics  
Operating Conditions: VSSIO=VSS = VSSA = 0V, VDDA =VDDIO=3.0–3.6V, VDD = 2.25–2.75V, TA = –40° to +85°C, CL < 50pF, fop = 80MHz  
Parameter  
Symbol  
tTFSWLM  
tRFSBLM  
tRFSWLM  
tTXEM  
Min  
-1.0  
-0.1  
-0.1  
20  
Typ  
Max  
-0.1  
0
Units  
ns  
Delay from STCK high to STFS (wl) low - Master5  
Delay from SRCK high to SRFS (bl) low - Master5  
ns  
Delay from SRCK high to SRFS (wl) low - Master5  
0
ns  
STCK high to STXD enable from high impedance - Master  
22  
ns  
STCK high to STXD valid - Master  
tTXVM  
24  
26  
ns  
STCK high to STXD not valid - Master  
STCK high to STXD high impedance - Master  
SRXD Setup time before SRCK low - Master  
SRXD Hold time after SRCK low - Master  
tTXNVM  
tTXHIM  
tSM  
0.1  
24  
0.2  
25.5  
ns  
ns  
4
ns  
tHM  
4
ns  
Synchronous Operation (in addition to standard internal clock parameters)  
SRXD Setup time before STCK low - Master  
SRXD Hold time after STCK low - Master  
tTSM  
tTHM  
4
4
1. Master mode is internally generated clocks and frame syncs  
2. Max clock frequency is IP_clk/4 = 40MHz / 4 = 10MHz for an 80MHz part.  
3. All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP=0 in SCR2 and RSCKP=0 in SCSR)  
and a non-inverted frame sync (TFSI=0 in SCR2 and RFSI=0 in SCSR). If the polarity of the clock and/or the frame sync  
have been inverted, all the timings remain valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS  
in the tables and in the figures.  
4. 50% duty cycle  
5. bl = bit length; wl = word length  
56F827 Technical Data, Rev. 12  
44  
Freescale Semiconductor  
Synchronous Serial Interface (SSI) Timing  
tSCKW  
tSCKH  
tSCKL  
STCK output  
STFS (bl) output  
STFS (wl) output  
tTFSBHM  
tTFSBLM  
tTFSWHM  
tTFSWLM  
tTXVM  
tTXEM  
tTXNVM  
tTXHIM  
First Bit  
Last Bit  
STXD  
SRCK output  
tRFSBHM  
tRFBLM  
SRFS (bl) output  
SRFS (wl) output  
tRFSWHM  
tRFSWLM  
tTSM  
tSM  
tHM  
tTHM  
SRXD  
Figure 3-25 Master Mode Timing Diagram  
1
Table 3-15 SSI Slave Mode Switching Characteristics  
Operating Conditions: VSSIO=VSS = VSSA = 0V, VDDA =VDDIO=3.0–3.6V, VDD = 2.25–2.75V, TA = –40° to +85°C, CL 50pF, fop = 80MHz  
Parameter  
Symbol  
fs  
Min  
Typ  
4
Max  
Units  
MHz  
ns  
102  
STCK frequency  
STCK period3  
tSCKW  
tSCKH  
tSCKL  
100  
504  
STCK high time  
ns  
504  
STCK low time  
ns  
Output clock rise/fall time  
ns  
56F827 Technical Data, Rev. 12  
Freescale Semiconductor  
45  
1
Table 3-15 SSI Slave Mode Switching Characteristics  
Operating Conditions: VSSIO=VSS = VSSA = 0V, VDDA =VDDIO=3.0–3.6V, VDD = 2.25–2.75V, TA = –40° to +85°C, CL 50pF, fop = 80MHz  
Parameter  
Symbol  
tTFSBHS  
tTFSWHS  
tRFSBHS  
tRFSWHS  
tTFSBLS  
tTFSWLS  
tRFSBLS  
tRFSWLS  
tTXES  
Min  
0.1  
0.1  
0.1  
0.1  
-1  
Typ  
Max  
46  
46  
46  
46  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Delay from STCK high to STFS (bl) high - Slave5  
Delay from STCK high to STFS (wl) high - Slave5  
Delay from SRCK high to SRFS (bl) high - Slave5  
Delay from SRCK high to SRFS (wl) high - Slave5  
Delay from STCK high to STFS (bl) low - Slave5  
Delay from STCK high to STFS (wl) low - Slave5  
Delay from SRCK high to SRFS (bl) low - Slave5  
-1  
-46  
-46  
Delay from SRCK high to SRFS (wl) low - Slave5  
STCK high to STXD enable from high impedance - Slave  
STCK high to STXD valid - Slave  
tTXVS  
1
25  
25  
27  
13  
28.5  
STFS high to STXD enable from high impedance (first bit) - Slave  
STFS high to STXD valid (first bit) - Slave  
STCK high to STXD not valid - Slave  
tFTXES  
tFTXVS  
tTXNVS  
tTXHIS  
5.5  
6
11  
11  
4
STCK high to STXD high impedance - Slave  
SRXD Setup time before SRCK low - Slave  
SRXD Hold time after SRCK low - Slave  
tSS  
tHS  
4
Synchronous Operation (in addition to standard external clock parameters)  
SRXD Setup time before STCK low - Slave  
SRXD Hold time after STCK low - Slave  
tTSS  
tTHS  
4
4
1. Slave mode is externally generated clocks and frame syncs  
2. Max clock frequency is IP_clk/4 = 40MHz / 4 = 10MHz for an 80MHz part.  
3. All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP=0 in SCR2 and RSCKP=0 in SCSR)  
and a non-inverted frame sync (TFSI=0 in SCR2 and RFSI=0 in SCSR). If the polarity of the clock and/or the frame sync have  
been inverted, all the timings remain valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS in the  
tables and in the figures.  
4. 50% duty cycle  
5. bl = bit length; wl = word length  
56F827 Technical Data, Rev. 12  
46  
Freescale Semiconductor  
Quad Timer Timing  
tSCKW  
tSCKH  
tSCKL  
STCK input  
STFS (bl) input  
STFS (wl) input  
tTFSBLS  
tTFSBHS  
tTFSWHS  
tTFSWLS  
tFTXVS  
tFTXES  
tTXVS  
tTXNVS  
tTXES  
tTXHIS  
First Bit  
Last Bit  
STXD  
SRCK input  
tRFBLS  
tRFSBHS  
SRFS (bl) input  
SRFS (wl) input  
tRFSWHS  
tRFSWLS  
tTSS  
tSS  
tHS  
tTHS  
SRXD  
Figure 3-26 Slave Mode Clock Timing  
3.12 Quad Timer Timing  
1, 2  
Table 3-16 Timer Timing  
Operating Conditions: VSSIO=VSS = VSSA = 0V, VDDA =VDDIO=3.0–3.6V, VDD = 2.25–2.75V, TA = –40° to +85°C, CL < 50pF, fop = 80MHz  
Characteristic  
Timer input period  
Symbol  
PIN  
Min  
4T+6  
2T+3  
2T  
Max  
Unit  
ns  
Timer input high/low period  
Timer output period  
PINHL  
POUT  
ns  
ns  
Timer output high/low period  
POUTHL  
1T  
ns  
1. In the formulas listed, T = clock cycle. For 80MHz operation, T = 12.5ns.  
2. Parameters listed are guaranteed by design.  
56F827 Technical Data, Rev. 12  
Freescale Semiconductor  
47  
Timer Inputs  
PIN  
PINHL  
PINHL  
Timer Outputs  
POUT  
POUTHL  
POUTHL  
Figure 3-27 Quad Timer Timing  
3.13 Serial Communication Interface (SCI) Timing  
4
Table 3-17 SCI Timing  
Operating Conditions: VSSIO=VSS = VSSA = 0V, VDDA =VDDIO=3.0–3.6V, VDD = 2.25–2.75V, TA = –40° to +85°C, CL 50pF, fop = 80MHz  
Characteristic  
Symbol  
Min  
Max  
Unit  
Baud Rate1  
BR  
(fMAX*2.5)/(80)  
Mbps  
RXD2 Pulse Width  
TXD3 Pulse Width  
RXDPW  
TXDPW  
0.965/BR  
1.04/BR  
1.04/BR  
ns  
ns  
0.965/BR  
1. fMAX is the frequency of operation of the system clock in MHz.  
2. The RXD pin in SCI0 is named RXD0 and the RXD pin in SCI1 is named RXD1.  
3. The TXD pin in SCI0 is named TXD0 and the TXD pin in SCI1 is named TXD1.  
4. Parameters listed are guaranteed by design.  
RXD  
SCI receive  
data pin  
RXDPW  
(Input)  
Figure 3-28 RXD Pulse Width  
TXD  
SCI receive  
data pin  
TXDPW  
(Input)  
Figure 3-29 TXD Pulse Width  
56F827 Technical Data, Rev. 12  
48  
Freescale Semiconductor  
JTAG Timing  
3.14 JTAG Timing  
1, 3  
Table 3-18 JTAG Timing  
Operating Conditions: VSSIO = VSS = VSSA = 0V, VDDA = VDDIO = 3.0–3.6V, VDD = 2.25–2.75V, TA = –40° to +85°C, CL 50pF, fop = 80MHz  
Characteristic  
TCK frequency of operation2  
Symbol  
Min  
Max  
Unit  
fOP  
DC  
10  
MHz  
TCK cycle time  
tCY  
tPW  
tDS  
100  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCK clock pulse width  
TMS, TDI data set-up time  
TMS, TDI data hold time  
TCK low to TDO data valid  
TCK low to TDO tri-state  
TRST assertion time  
DE assertion time  
0.4  
1.2  
tDH  
tDV  
26.6  
23.5  
tTS  
tTRST  
tDE  
50  
4T  
1. Timing is both wait state and frequency dependent. For the values listed, T = clock cycle. For 80MHz  
operation, T = 12.5ns.  
2. TCK frequency of operation must be less than 1/8 the processor rate.  
3. Parameters listed are guaranteed by design.  
tCY  
tPW  
tPW  
VIH  
VM  
VIL  
VM  
TCK  
(Input)  
VM = VIL + (VIH – VIL)/2  
Figure 3-30 Test Clock Input Timing Diagram  
56F827 Technical Data, Rev. 12  
Freescale Semiconductor  
49  
TCK  
(Input)  
tDS  
tDH  
TDI  
TMS  
Input Data Valid  
(Input)  
tDV  
TDO  
(Output)  
Output Data Valid  
tTS  
TDO  
(Output)  
tDV  
TDO  
(Output)  
Output Data Valid  
Figure 3-31 Test Access Port Timing Diagram  
TRST  
(Input)  
tTRST  
Figure 3-32 TRST Timing Diagram  
DE  
tDE  
Figure 3-33 OnCE—Debug Event  
56F827 Technical Data, Rev. 12  
50  
Freescale Semiconductor  
Package and Pin-Out Information 56F827  
Part 4 Packaging  
4.1 Package and Pin-Out Information 56F827  
This section contains package and pin-out information for the 128-pin LQFP configuration of the 56F827.  
RXD2  
TXD2  
RXD1  
TXD1  
RXD0  
TXD0  
VREFLO  
VSSA_ADC  
VDDA  
VSSA  
XTAL  
PIN 64  
PIN 102  
EXTAL  
TA3  
TA2  
TA1  
VSSIO  
CLKO  
VDDIO  
TA0  
VDDIO  
SRD  
SRFS  
VSSIO  
VSS  
SRCK  
STD  
VDD  
GPIOB7  
STFS  
STCK  
GPIOB6  
GPIOB5  
GPIOB4  
GPIOB3  
IRQB  
TDI  
TDO  
TMS  
GPIOB2  
GPIOB1  
GPIOB0  
D0  
TRST  
TCK  
TCS  
RESET  
DE  
IRQA  
ORIENTATION  
MARK  
PIN 39  
D1  
D2  
D3  
PIN 1  
EXTBOOT  
Figure 4-1 Top View, 56F827 128-pin LQFP Package  
56F827 Technical Data, Rev. 12  
Freescale Semiconductor  
51  
Table 4-1 56F827 Pin Identification by Pin Number  
Pin No.  
Signal Name  
Pin No.  
33  
Signal Name  
A10  
Pin No.  
65  
Signal Name  
VREFP  
Pin No.  
97  
Signal Name  
GPIOD1  
GPIOD0  
SS  
1
2
3
4
5
D4  
D5  
34  
A11  
66  
VREFN  
98  
D6  
35  
A12  
67  
VREFHI  
99  
VDDIO  
VSSIO  
36  
A13  
68  
VREFMID  
VDDA_ADC  
100  
101  
MISO  
37  
A14  
69  
MOSI  
6
D7  
D8  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
A15  
EXTBOOT  
IRQA  
DE  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
ANA0  
ANA1  
ANA2  
ANA3  
ANA4  
ANA5  
ANA6  
ANA7  
ANA8  
ANA9  
VSS  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
SCLK  
RXD2  
TXD2  
RXD1  
TXD1  
RXD0  
TXD0  
TA3  
7
8
D9  
9
D10  
D11  
D12  
D13  
D14  
D15  
RD  
10  
11  
12  
13  
14  
15  
16  
RESET  
TCS  
TCK  
TRST  
TMS  
TA2  
TDO  
TA1  
WR  
TDI  
TA0  
17  
18  
19  
20  
DS  
PS  
49  
50  
51  
52  
IRQB  
STCK  
STFS  
STD  
81  
82  
83  
84  
VDD  
113  
114  
115  
116  
VDDIO  
VSSIO  
VSS  
VDDIO  
VSSIO  
PCS2  
VDD  
VSS  
VDD  
21  
22  
23  
24  
A0  
A1  
A2  
A3  
53  
54  
55  
56  
SRCK  
SRFS  
SRD  
85  
86  
87  
88  
PCS3  
PCS4  
PCS5  
PCS6  
117  
118  
119  
120  
GPIOB7  
GPIOB6  
GPIOB5  
GPIOB4  
VDDIO  
25  
26  
A4  
A5  
57  
58  
CLKO  
VSSIO  
89  
90  
PCS7  
VPP  
121  
122  
GPIOB3  
GPIOB2  
27  
A6  
59  
EXTAL  
91  
GPIOD7  
123  
GPIOB1  
56F827 Technical Data, Rev. 12  
52  
Freescale Semiconductor  
Package and Pin-Out Information 56F827  
Table 4-1 56F827 Pin Identification by Pin Number (Continued)  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
28  
29  
A7  
60  
61  
XTAL  
VSSA  
92  
93  
GPIOD6  
GPIOD5  
124  
125  
GPIOB0  
D0  
VDDIO  
30  
31  
32  
VSSIO  
A8  
62  
63  
64  
VDDA  
VSSA_ADC  
VREFLO  
94  
95  
96  
GPIOD4  
GPIOD3  
GPIOD2  
126  
127  
128  
D1  
D2  
D3  
A9  
56F827 Technical Data, Rev. 12  
Freescale Semiconductor  
53  
102  
65  
64  
103  
128  
39  
38  
MILLIMETERS  
DIM  
MIN  
---  
MAX  
1.60  
0.15  
1.45  
0.27  
0.23  
0.20  
0.16  
A
A1  
A2  
b
b1  
c
0.05  
1.35  
0.17  
0.17  
0.09  
0.09  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE H IS LOCATED AT BOTTOM OF LEAD  
AND IS COINCIDENT WITH THE LEAD WHERE THE  
LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF  
THE PARTING LINE.  
4. DATUMS A, B, AND D TO BE DETERMINED AT DATUM  
PLANE H.  
5. DIMENSIONS D AND E TO BE DETERMINED AT  
SEATING PLANE C.  
6. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 PER  
SIDE. DIMENSIONS D1 AND E1 DO INCLUDE MOLD  
MISMATCH AND ARE DETERMINED AT DATUM  
PLANE H.  
c1  
D
22.00 BSC  
D1  
e
E
E1  
L
L1  
L2  
S
20.00BSC  
0.50 BSC  
16.00 BSC  
14.00 BSC  
0.45  
0.75  
1.00 REF  
0.50 REF  
0.20  
0.08  
---  
---  
R1  
R2  
0
0.08  
0.20  
7o  
---  
7. DIMENSION b DOES NOT INCLUDE DAMBAR  
PROTRUSION. DAMBAR PROTRUSION SHALL NOT  
CAUSE THE b DIMENSION TO EXCEED 0.35.  
0o  
0o  
01  
02  
11o  
13o  
Case Outline - 1129-01  
Figure 4-2 128-pin LQFP Mechanical Information  
Please see www.freescale.com for the most current case outline.  
56F827 Technical Data, Rev. 12  
54  
Freescale Semiconductor  
Thermal Design Considerations  
Part 5 Design Considerations  
5.1 Thermal Design Considerations  
An estimation of the chip junction temperature, T , in °C can be obtained from the equation:  
J
Equation 1:TJ = TA + (PD × RθJA  
)
Where:  
TA = ambient temperature °C  
RθJA = package junction-to-ambient thermal resistance °C/W  
PD = power dissipation in package  
Historically, thermal resistance has been expressed as the sum of a junction-to-case thermal resistance and  
a case-to-ambient thermal resistance:  
Equation 2:RθJA = RθJC + RθCA  
Where:  
RθJA = package junction-to-ambient thermal resistance °C/W  
RθJC = package junction-to-case thermal resistance °C/W  
RθCA = package case-to-ambient thermal resistance °C/W  
R
is device-related and cannot be influenced by the user. The user controls the thermal environment to  
θJC  
change the case-to-ambient thermal resistance, R  
. For example, the user can change the air flow around  
θCA  
the device, add a heat sink, change the mounting arrangement on the Printed Circuit Board (PCB), or  
otherwise change the thermal dissipation capability of the area surrounding the device on the PCB. This  
model is most useful for ceramic packages with heat sinks; some 90% of the heat flow is dissipated through  
the case to the heat sink and out to the ambient environment. For ceramic packages, in situations where  
the heat flow is split between a path to the case and an alternate path through the PCB, analysis of the  
device thermal performance may need the additional modeling capability of a system-level thermal  
simulation tool.  
The thermal performance of plastic packages is more dependent on the temperature of the PCB to which  
the package is mounted. Again, if the estimations obtained from R  
the thermal performance is adequate, a system-level model may be appropriate.  
do not satisfactorily answer whether  
θJA  
Definitions:  
A complicating factor is the existence of three common definitions for determining the junction-to-case  
thermal resistance in plastic packages:  
Measure the thermal resistance from the junction to the outside surface of the package (case) closest to the  
chip mounting area when that surface has a proper heat sink. This is done to minimize temperature variation  
across the surface.  
56F827 Technical Data, Rev. 12  
Freescale Semiconductor  
55  
Measure the thermal resistance from the junction to where the leads are attached to the case. This definition  
is approximately equal to a junction to board thermal resistance.  
Use the value obtained by the equation (TJ – TT)/PD where TT is the temperature of the package case  
determined by a thermocouple.  
The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T  
thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so  
that the thermocouple junction rests on the package. A small amount of epoxy is placed over the  
thermocouple junction and over about 1mm of wire extending from the junction. The thermocouple wire  
is placed flat against the package case to avoid measurement errors caused by cooling effects of the  
thermocouple wire.  
When heat sink is used, the junction temperature is determined from a thermocouple inserted at the  
interface between the case of the package and the interface material. A clearance slot or hole is normally  
required in the heat sink. Minimizing the size of the clearance is important to minimize the change in  
thermal performance caused by removing part of the thermal interface to the heat sink. Because of the  
experimental difficulties with this technique, many engineers measure the heat sink temperature and then  
back-calculate the case temperature using a separate measurement of the thermal resistance of the  
interface. From this case temperature, the junction temperature is determined from the junction-to-case  
thermal resistance.  
5.2 Electrical Design Considerations  
CAUTION  
This device contains protective circuitry to guard  
against damage due to high static voltage or  
electrical fields. However, normal precautions are  
advised to avoid application of any voltages higher  
than maximum-rated voltages to this high-impedance  
circuit. Reliability of operation is enhanced if unused  
inputs are tied to an appropriate voltage level.  
Use the following list of considerations to assure correct operation:  
Provide a low-impedance path from the board power supply to each VDD, VDDIO, and VDDA pin on the  
controller, and from the board ground to each VSS,VSSIO, and VSSA (GND) pin.  
The minimum bypass requirement is to place 0.1μF capacitors positioned as close as possible to the package  
supply pins. The recommended bypass configuration is to place one bypass capacitor on each of the  
VDD/VSS pairs, including VDDA/VSSA and VDDIO/VSSIO. Ceramic and tantalum capacitors tend to provide  
better performance tolerances.  
Ensure that capacitor leads and associated printed circuit traces that connect to the chip VDD, VDDIO, and  
VDDA and VSS, VSSIO, and VSSA (GND) pins are less than 0.5 inch per capacitor lead.  
56F827 Technical Data, Rev. 12  
56  
Freescale Semiconductor  
Electrical Design Considerations  
Bypass the VDD and VSS layers of the PCB with approximately 100μF, preferably with a high-grade  
capacitor such as a tantalum capacitor.  
Because the controller’s output signals have fast rise and fall times, PCB trace lengths should be minimal.  
Consider all device loads as well as parasitic capacitance due to PCB traces when calculating capacitance.  
This is especially critical in systems with higher capacitive loads that could create higher transient currents  
in the VDD and VSS circuits.  
Take special care to minimize noise levels on the VREF, VDDA and VSSA pins.  
When using Wired-OR mode on the SPI or the IRQx pins, the user must provide an external pull-up device.  
Designs that utilize the TRST pin for JTAG port or OnCE module functionality (such as development or  
debugging systems) should allow a means to assert TRST whenever RESET is asserted, as well as a means  
to assert TRST independently of RESET. TRST must be asserted at power up for proper operation. Designs  
that do not require debugging functionality, such as consumer products, TRST should be tied low.  
Because the Flash memory is programmed through the JTAG/OnCE port, designers should provide an  
interface to this port to allow in-circuit Flash programming.  
56F827 Technical Data, Rev. 12  
Freescale Semiconductor  
57  
Part 6 Ordering Information  
Table 6-1 lists the pertinent information needed to place an order. Consult a Freescale Semiconductor  
sales office or authorized distributor to determine availability and to order parts.  
Table 6-1 56F827 Ordering Information  
Ambient  
Frequency  
(MHz)  
Supply  
Voltage  
Pin  
Count  
Part  
Package Type  
Order Number  
56F827  
56F827  
2.25–2.75V  
2.25–2.75V  
Low Profile Quad Flat Pack (LQFP)  
Low Profile Quad Flat Pack (LQFP)  
128  
128  
80  
DSP56F827FG80  
80  
DSP56F827FG80E *  
*This package is RoHS compliant.  
56F827 Technical Data, Rev. 12  
58  
Freescale Semiconductor  
Electrical Design Considerations  
56F827 Technical Data, Rev. 12  
Freescale Semiconductor  
59  
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
RoHS-compliant and/or Pb-free versions of Freescale products have the  
functionality and electrical characteristics of their non-RoHS-compliant  
and/or non-Pb-free counterparts. For further information, see  
http://www.freescale.com or contact your Freescale sales representative.  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064, Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Information in this document is provided solely to enable system and  
software implementers to use Freescale Semiconductor products. There are  
no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits or integrated circuits based on the  
information in this document.  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
Freescale Semiconductor reserves the right to make changes without further  
notice to any products herein. Freescale Semiconductor makes no warranty,  
representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does Freescale Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or  
incidental damages. “Typical” parameters that may be provided in Freescale  
Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer  
application by customer’s technical experts. Freescale Semiconductor does  
not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized  
for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other  
application in which the failure of the Freescale Semiconductor product could  
create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold Freescale  
Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized  
use, even if such claim alleges that Freescale Semiconductor was negligent  
regarding the design or manufacture of the part.  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor,  
Inc. All other product or service names are the property of their respective owners.  
This product incorporates SuperFlash® technology licensed from SST.  
© Freescale Semiconductor, Inc. 2005. All rights reserved.  
DSP56F827  
Rev. 12  
01/2007