5秒后页面跳转
56F807 PDF预览

56F807

更新时间: 2022-04-23 23:00:11
品牌 Logo 应用领域
飞思卡尔 - FREESCALE 控制器
页数 文件大小 规格书
60页 874K
描述
16-bit Digital Signal Controllers

56F807 数据手册

 浏览型号56F807的Datasheet PDF文件第1页浏览型号56F807的Datasheet PDF文件第3页浏览型号56F807的Datasheet PDF文件第4页浏览型号56F807的Datasheet PDF文件第5页浏览型号56F807的Datasheet PDF文件第6页浏览型号56F807的Datasheet PDF文件第7页 
56F807 General Description  
Up to 40 MIPS at 80MHz core frequency  
Two 6 channel PWM Modules  
DSP and MCU functionality in a unified,  
C-efficient architecture  
Four 4 channel, 12-bit ADCs  
Two Quadrature Decoders  
Hardware DO and REP loops  
CAN 2.0 B Module  
MCU-friendly instruction set supports both DSP  
and controller functions: MAC, bit manipulation  
unit, 14 addressing modes  
Two Serial Communication Interfaces (SCIs)  
Serial Peripheral Interface (SPI)  
Up to four General Purpose Quad Timers  
JTAG/OnCETM port for debugging  
14 Dedicated and 18 Shared GPIO lines  
160-pin LQFP or 160 MAPBGA Packages  
60K × 16-bit words (120KB) Program Flash  
2K × 16-bit words (4KB) Program RAM  
8K × 16-bit words (16KB) Data Flash  
4K × 16-bit words (8KB) Data RAM  
2K × 16-bit words (4KB) Boot Flash  
Up to 64K × 16- bit words (128KB) each of external  
Program and Data memory  
6
PWM Outputs  
PWMA  
PWMB  
RSTO  
EXTBOOT  
IRQB  
Current Sense Inputs  
Fault Inputs  
3
4
RESET  
IRQA  
VPP VCAPC  
2
V
V
V
V
SSA  
DD  
SS  
DDA  
6
6
PWM Outputs  
8
10*  
3
3
Current Sense Inputs  
Fault Inputs  
3
4
4
4
JTAG/  
OnCE  
Port  
Digital Reg  
Analog Reg  
A/D1  
A/D2  
ADCA  
Low Voltage  
Supervisor  
VREF  
A/D1  
A/D2  
ADCB  
4
4
VREF2  
Interrupt  
Controller  
Data ALU  
Address  
Generation  
Unit  
Bit  
Manipulation  
Unit  
Program Controller  
and  
Hardware Looping Unit  
Quadrature  
Decoder 0  
/Quad Timer  
16 x 16 + 36 36-Bit MAC  
Three 16-bit Input Registers  
Two 36-bit Accumulators  
4
Quadrature  
Decoder 1  
/Quad Timer B  
Program Memory  
61440 x 16 Flash  
2048 x 16 SRAM  
PAB  
PLL  
CLKO  
4
2
PDB  
16-Bit  
56800  
Core  
Quad Timer C  
XTAL  
Boot Flash  
2048 x 16 Flash  
Clock Gen  
Quad Timer D  
/ Alt Func  
EXTAL  
XDB2  
4
2
CGDB  
Data Memory  
8192 x 16 Flash  
4096 x 16 SRAM  
CAN 2.0A/B  
XAB1  
SCI0  
or  
GPIO  
XAB2  
INTERRUPT  
CONTROLS  
IPBB  
CONTROLS  
16  
2
2
A[00:05]  
SCI1  
or  
GPIO  
External  
Address Bus  
Switch  
16  
6
A[06:15] or  
GPIO-E2:E3 &  
GPIO-A0:A7  
COP/  
Watchdog  
COP RESET  
External  
Bus  
Interface  
Unit  
10  
16  
External  
Data Bus  
Switch  
MODULE CONTROLS  
Applica-  
tion-Specific  
Memory &  
Peripherals  
SPI  
or  
GPIO  
D[00:15]  
IPBus Bridge  
(IPBB)  
ADDRESS BUS [8:0]  
DATA BUS [15:0]  
PS Select  
DS Select  
WR Enable  
RD Enable  
4
Bus  
Control  
Dedicated  
GPIO  
14  
*includes TCS pin which is reserved for factory use and is tied to VSS  
56F807 Block Diagram  
56F807 Technical Data Technical Data, Rev. 15  
Freescale Semiconductor  
3
Part 1 Overview  
1.1 56F807 Features  
1.1.1  
Processing Core  
Efficient 16-bit 56800 family controller engine with dual Harvard architecture  
As many as 40 Million Instructions Per Second (MIPS) at 80MHz core frequency  
Single-cycle 16 × 16-bit parallel Multiplier-Accumulator (MAC)  
Two 36-bit accumulators including extension bits  
16-bit bidirectional barrel shifter  
Parallel instruction set with unique processor addressing modes  
Hardware DO and REP loops  
Three internal address buses and one external address bus  
Four internal data buses and one external data bus  
Instruction set supports both DSP and controller functions  
Controller style addressing modes and instructions for compact code  
Efficient C compiler and local variable support  
Software subroutine and interrupt stack with depth limited only by memory  
JTAG/OnCE debug programming interface  
1.1.2  
Memory  
Harvard architecture permits as many as three simultaneous accesses to Program and Data memory  
On-chip memory including a low-cost, high-volume Flash solution  
— 60K × 16-bit words of Program Flash  
— 2K × 16-bit words of Program RAM  
— 8K × 16-bit words of Data Flash  
— 4K × 16-bit words of Data RAM  
— 2K × 16-bit words of Boot Flash  
Off-chip memory expansion capabilities programmable for 0, 4, 8, or 12 wait states  
— As much as 64K × 16 bits of Data memory  
— As much as 64K × 16 bits of Program memory  
1.1.3  
Peripheral Circuits for 56F807  
Two Pulse Width Modulator modules each with six PWM outputs, three Current Sense inputs, and four  
Fault inputs, fault tolerant design with dead time insertion, supports both center- and edge-aligned modes  
Four 12-bit, Analog-to-Digital Converters (ADCs), which support four simultaneous conversions with  
quad, 4-pin multiplexed inputs; ADC and PWM modules can be synchronized  
Two Quadrature Decoders each with four inputs or two additional Quad Timers  
56F807 Technical Data Technical Data, Rev. 15  
4
Freescale Semiconductor  
56F807 Description  
Two dedicated General Purpose Quad Timers totaling six pins: Timer C with two pins and Timer D with  
four pins  
CAN 2.0 B Module with 2-pin port for transmit and receive  
Two Serial Communication Interfaces each with two pins (or four additional GPIO lines)  
Serial Peripheral Interface (SPI) with configurable 4-pin port (or four additional GPIO lines)  
Computer-Operating Properly (COP) Watchdog timer  
Two dedicated external interrupt pins  
14 dedicated General Purpose I/O (GPIO) pins, 18 multiplexed GPIO pins  
External reset input pin for hardware reset  
External reset output pin for system reset  
JTAG/On-Chip Emulation (OnCE™) for unobtrusive, processor speed-independent debugging  
Software-programmable, Phase Locked Loop-based frequency synthesizer for the controller core clock  
1.1.4  
Energy Information  
Fabricated in high-density CMOS with 5V-tolerant, TTL-compatible digital inputs  
Uses a single 3.3V power supply  
On-chip regulators for digital and analog circuitry to lower cost and reduce noise  
Wait and Stop modes available  
1.2 56F807 Description  
The 56F807 is a member of the 56800 core-based family of processors. It combines, on a single chip, the  
processing power of a DSP and the functionality of a microcontroller with a flexible set of peripherals to  
create an extremely cost-effective solution. Because of its low cost, configuration flexibility, and compact  
program code, the 56F807 is well-suited for many applications. The 56F807 includes many peripherals  
that are especially useful for applications such as motion control, smart appliances, steppers, encoders,  
tachometers, limit switches, power supply and control, automotive control, engine management, noise  
suppression, remote utility metering, industrial control for power, lighting, and automation.  
The 56800 core is based on a Harvard-style architecture consisting of three execution units operating in  
parallel, allowing as many as six operations per instruction cycle. The MCU-style programming model and  
optimized instruction set allow straightforward generation of efficient, compact DSP and control code.  
The instruction set is also highly efficient for C/C++ Compilers to enable rapid development of optimized  
control applications.  
The 56F807 supports program execution from either internal or external memories. Two data operands can  
be accessed from the on-chip Data RAM per instruction cycle. The 56F807 also provides two external  
dedicated interrupt lines and up to 32 General Purpose Input/Output (GPIO) lines, depending on peripheral  
configuration.  
The 56F807 controller includes 60K, 16-bit words of Program Flash and 8K words of Data Flash (each  
programmable through the JTAG port) with 2K words of Program RAM and 4K words of Data RAM. It  
also supports program execution from external memory.  
56F807 Technical Data Technical Data, Rev. 15  
Freescale Semiconductor  
5
A total of 2K words of Boot Flash is incorporated for easy customer-inclusion of field-programmable  
software routines that can be used to program the main Program and Data Flash memory areas. Both  
Program and Data Flash memories can be independently bulk erased or erased in page sizes of 256 words.  
The Boot Flash memory can also be either bulk or page erased.  
A key application-specific feature of the 56F807 is the inclusion of two Pulse Width Modulator (PWM)  
modules. These modules each incorporate three complementary, individually programmable PWM signal  
outputs (each module is also capable of supporting six independent PWM functions, for a total of 12 PWM  
outputs) to enhance motor control functionality. Complementary operation permits programmable dead  
time insertion, distortion correction via current sensing by software, and separate top and bottom output  
polarity control. The up-counter value is programmable to support a continuously variable PWM  
frequency. Edge- and center-aligned synchronous pulse width control (0% to 100% modulation) is  
supported. The device is capable of controlling most motor types: ACIM (AC Induction Motors), both  
BDC and BLDC (Brush and Brushless DC motors), SRM and VRM (Switched and Variable Reluctance  
Motors), and stepper motors. The PWMs incorporate fault protection and cycle-by-cycle current limiting  
with sufficient output drive capability to directly drive standard optoisolators. A “smoke-inhibit”,  
write-once protection feature for key parameters is also included. A patented PWM waveform distortion  
correction circuit is also provided. Each PWM is double-buffered and includes interrupt controls to permit  
integral reload rates to be programmable from 1 to 16. The PWM modules provide a reference output to  
synchronize the analog-to-digital converters.  
The 56F807 incorporates two separate Quadrature Decoders capable of capturing all four transitions on  
the two-phase inputs, permitting generation of a number proportional to actual position. Speed  
computation capabilities accommodate both fast- and slow-moving shafts. An integrated watchdog timer  
in the Quadrature Decoder can be programmed with a time-out value to alarm when no shaft motion is  
detected. Each input is filtered to ensure only true transitions are recorded.  
This controller also provides a full set of standard programmable peripherals that include two Serial  
Communications Interfaces (SCI), one Serial Peripheral Interface (SPI), and four Quad Timers. Any of  
these interfaces can be used as General-Purpose Input/Outputs (GPIO) if that function is not required. A  
Controller Area Network interface (CAN Version 2.0 A/B-compliant), an internal interrupt controller, and  
14 dedicated GPIO lines are also included on the 56F807.  
1.3 State of the Art Development Environment  
Processor ExpertTM (PE) provides a Rapid Application Design (RAD) tool that combines easy-to-use  
component-based software application creation with an expert knowledge system.  
The Code Warrior Integrated Development Environment is a sophisticated tool for code navigation,  
compiling, and debugging. A complete set of evaluation modules (EVMs) and development system cards  
will support concurrent engineering. Together, PE, Code Warrior and EVMs create a complete, scalable  
tools solution for easy, fast, and efficient development.  
56F807 Technical Data Technical Data, Rev. 15  
6
Freescale Semiconductor  
Product Documentation  
1.4 Product Documentation  
The four documents listed in Table 1-1 are required for a complete description and proper design with the  
56F807. Documentation is available from local Freescale distributors, Freescale Semiconductor sales offices,  
Freescale Literature Distribution Centers, or online at http://www.freescale.com  
.
Table 1-1 56F807 Chip Documentation  
Topic  
Description  
Order Number  
56800EFM  
56800E  
Detailed description of the 56800 family architecture,  
and 16-bit core processor and the instruction set  
Family Manual  
DSP56F801/803/805/807  
User’s Manual  
Detailed description of memory, peripherals, and  
interfaces of the 56F801, 56F803, 56F805, and  
56F807  
DSP56F801-7UM  
56F807  
Technical Data Sheet  
Electrical and timing specifications, pin descriptions,  
and package descriptions (this document)  
DSP56F807  
56F807E  
56F807  
Errata  
Details any chip issues that might be present  
1.5 Data Sheet Conventions  
This data sheet uses the following conventions:  
OVERBAR  
This is used to indicate a signal that is active when pulled low. For example, the RESET pin is  
active when low.  
“asserted”  
“deasserted”  
Examples:  
A high true (active high) signal is high or a low true (active low) signal is low.  
A high true (active high) signal is low or a low true (active low) signal is high.  
Voltage1  
Signal/Symbol  
Logic State  
True  
Signal State  
Asserted  
PIN  
PIN  
PIN  
PIN  
VIL/VOL  
False  
Deasserted  
Asserted  
VIH/VOH  
VIH/VOH  
VIL/VOL  
True  
False  
Deasserted  
1. Values for VIL, VOL, VIH, and VOH are defined by individual product specifications.  
56F807 Technical Data Technical Data, Rev. 15  
Freescale Semiconductor  
7
Part 2 Signal/Connection Descriptions  
2.1 Introduction  
The input and output signals of the 56F807 are organized into functional groups, as shown in Table 2-1  
and as illustrated in Figure 2-1. In Table 2-2 through Table 2-19, each table row describes the signal or  
signals present on a pin.  
Table 2-1 Functional Group Pin Allocations  
Number of  
Pins  
Detailed  
Description  
Functional Group  
Power (VDD or VDDA  
)
11  
13  
4
Table 2-2  
Table 2-3  
Table 2-4  
Ground (VSS or VSSA  
)
Supply Capacitors & VPP  
PLL and Clock  
3
Table 2-5  
Table 2-6  
Address Bus1  
16  
Data Bus  
16  
4
Table 2-7  
Table 2-8  
Table 2-9  
Table 2-10  
Table 2-11  
Table 2-12  
Bus Control  
Interrupt and Program Control  
Dedicated General Purpose Input/Output  
Pulse Width Modulator (PWM) Ports  
5
14  
26  
4
Serial Peripheral Interface (SPI) Port1  
Quadrature Decoder Ports2  
8
4
Table 2-13  
Table 2-15  
Serial Communications Interface (SCI) Ports1  
CAN Port  
2
20  
6
Table 2-16  
Table 2-17  
Table 2-18  
Table 2-19  
Analog to Digital Converter (ADC) Ports  
Quad Timer Module Ports  
JTAG/On-Chip Emulation (OnCE)  
1. Alternately, GPIO pins  
6
2. Alternately, Quad Timer pins  
56F807 Technical Data Technical Data, Rev. 15  
8
Freescale Semiconductor  
Introduction  
VDD  
VSS  
8
Power Port  
Ground Port  
Power Port  
Ground Port  
GPIOB0–7  
GPIOD0–5  
Dedicated  
GPIO  
8
6
10*  
3
VDDA  
VSSA  
3
PWMA0-5  
ISA0-2  
6
3
4
PWMA  
Port  
VCAPC  
VPP  
Other  
Supply  
Ports  
2
2
FAULTA0-3  
PWMB0-5  
ISB0-2  
6
3
4
EXTAL  
XTAL  
PLL  
and  
Clock  
1
1
1
PWMB  
Port  
56F807  
FAULTB0-3  
CLKO  
SCLK (GPIOE4)  
MOSI (GPIOE5)  
MISO (GPIOE6)  
SS (GPIOE7)  
1
1
1
1
A0-A5  
A6-7 (GPIOE2-E3)  
A8-15 (GPIOA0-A7)  
6
2
8
External  
Address Bus or  
GPIO  
SPI Port  
or GPIO  
External  
Data Bus  
D0–D15  
16  
TXD0 (GPIOE0)  
RXD0 (GPIOE1)  
1
1
SCI0 Port  
or GPIO  
PS  
DS  
1
1
1
1
External  
Bus Control  
SCI1 Port  
or GPI0  
TXD1 (GPIOD6)  
RXD1 (GPIOD7)  
1
1
RD  
WR  
ADCA  
Port  
ANA0-7  
VREF  
8
2
8
PHASEA0 (TA0)  
PHASEB0 (TA1)  
INDEX0 (TA2)  
HOME0 (TA3)  
PHASEA1 (TB0)  
PHASEB1 (TB1)  
INDEX1 (TB2)  
HOME1 (TB3)  
TCK  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Quadrature  
Decoder or  
Quad Timer A  
ADCB  
Port  
ANB0-7  
MSCAN_RX  
MSCAN_TX  
1
1
CAN  
Quadrature  
Decoder1 or  
Quad Timer B  
Quad  
Timers  
C & D  
TC0-1  
TD0-3  
2
4
TMS  
IRQA  
1
1
1
1
1
TDI  
IRQB  
JTAG/OnCE™  
Interrupt/  
Program  
Control  
TDO  
Port  
RESET  
RSTO  
TRST  
EXTBOOT  
DE  
*includes TCS pin which is reserved for factory use and is tied to VSS  
1
Figure 2-1 56F807 Signals Identified by Functional Group  
1. Alternate pin functionality is shown in parenthesis.  
56F807 Technical Data Technical Data, Rev. 15  
Freescale Semiconductor  
9
2.2 Power and Ground Signals  
Table 2-2 Power Inputs  
No. of Pins  
Signal Name  
VDD  
Signal Description  
8
Power—These pins provide power to the internal structures of the chip, and should  
all be attached to VDD.  
3
VDDA  
Analog Power—These pins is a dedicated power pin for the analog portion of the  
chip and should be connected to a low noise 3.3V supply.  
Table 2-3 Grounds  
No. of Pins  
Signal Name  
VSS  
Signal Description  
9
GND—These pins provide grounding for the internal structures of the chip and should  
all be attached to VSS.  
3
1
VSSA  
TCS  
Analog Ground—This pin supplies an analog ground.  
TCS—This Schmitt pin is reserved for factory use and must be tied to VSS for normal  
use. In block diagrams, this pin is considered an additional VSS.  
Table 2-4 Supply Capacitors and VPP  
No. of  
Pins  
Signal  
Name  
Signal  
Type  
State During  
Reset  
Signal Description  
2
VCAPC  
Supply  
Supply  
VCAPC—Connect each pin to a 2.2uF or greater bypass capacitor in  
order to bypass the core logic voltage regulator (required for proper chip  
operation). For more information, please refer to Section 5.2  
2
VPP  
Input  
Input  
VPP—This pin should be left unconnected as an open circuit for normal  
functionality.  
56F807 Technical Data Technical Data, Rev. 15  
10  
Freescale Semiconductor  
Clock and Phase Locked Loop Signals  
2.3 Clock and Phase Locked Loop Signals  
Table 2-5 PLL and Clock  
No. of  
Pins  
Signal  
Name  
Signal  
Type  
State During  
Reset  
Signal Description  
1
EXTAL  
Input  
Input  
External Crystal Oscillator Input—This input should be connected to  
an 8MHz external crystal or ceramic resonator. For more information,  
please refer to Section 3.4.  
1
XTAL  
Input/  
Output  
Chip-driven  
Crystal Oscillator Output—This output should be connected to an  
8MHz external crystal or ceramic resonator. For more information, please  
refer to Section 3.4.  
This pin can also be connected to an external clock source. For more  
information, please refer to Section 3.4.2.  
1
CLKO  
Output  
Chip-driven  
Clock Output—This pin outputs a buffered clock signal. By programming  
the CLKOSEL[4:0] bits in the CLKO Select Register (CLKOSR), the user  
can select between outputting a version of the signal applied to XTAL and  
a version of the device’s master clock at the output of the PLL. The clock  
frequency on this pin can also be disabled by programming the  
CLKOSEL[4:0] bits in CLKOSR.  
2.4 Address, Data, and Bus Control Signals  
Table 2-6 Address Bus Signals  
No. of  
Pins  
Signal  
Name  
Signal  
Type  
State During  
Reset  
Signal Description  
6
A0–A5  
Output  
Tri-stated  
Address Bus—A0–A5 specify the address for external Program or  
Data memory accesses.  
2
A6–A7  
Output  
Tri-stated  
Address Bus—A6–A7 specify the address for external Program or  
Data memory accesses.  
GPIOE2-  
GPIOE3  
Input/O  
utput  
Input  
Port E GPIO—These two General Purpose I/O (GPIO) pins can  
individually be programmed as input or output pins.  
After reset, the default state is Address Bus.  
8
A8–A15  
Output  
Tri-stated  
Input  
Address Bus—A8–A15 specify the address for external Program or  
Data memory accesses.  
GPIOA0-  
GPIOA7  
Input/O  
utput  
Port A GPIO—These eight General Purpose I/O (GPIO) pins can be  
individually programmed as input or output pins.  
After reset, the default state is Address Bus.  
56F807 Technical Data Technical Data, Rev. 15  
Freescale Semiconductor  
11  
Table 2-7 Data Bus Signals  
No. of  
Pins  
Signal  
Name  
Signal  
Type  
State During  
Signal Description  
Reset  
16  
D0–D15  
Input/O  
utput  
Tri-stated  
Data Bus— D0–D15 specify the data for external program or data  
memory accesses. D0–D15 are tri-stated when the external bus is  
inactive. Internal pullups may be active.  
Table 2-8 Bus Control Signals  
No. of  
Pins  
Signal  
Name  
Signal  
Type  
State During  
Signal Description  
Reset  
1
1
1
PS  
DS  
WR  
Output  
Tri-stated  
Program Memory Select—PS is asserted low for external program  
memory access.  
Output  
Output  
Tri-stated  
Tri-stated  
Data Memory Select—DS is asserted low for external data memory  
access.  
Write Enable—WR is asserted during external memory write cycles.  
When WR is asserted low, pins D0–D15 become outputs and the device  
puts data on the bus. When WR is deasserted high, the external data is  
latched inside the external device. When WR is asserted, it qualifies the  
A0–A15, PS, and DS pins. WR can be connected directly to the WE pin of  
a Static RAM.  
1
RD  
Output  
Tri-stated  
Read Enable—RD is asserted during external memory read cycles. When  
RD is asserted low, pins D0–D15 become inputs and an external device is  
enabled onto the device’s data bus. When RD is deasserted high, the  
external data is latched inside the device. When RD is asserted, it qualifies  
the A0–A15, PS, and DS pins. RD can be connected directly to the OE pin  
of a Static RAM or ROM.  
2.5 Interrupt and Program Control Signals  
Table 2-9 Interrupt and Program Control Signals  
No. of  
Pins  
Signal  
Name  
Signal  
Type  
State During  
Reset  
Signal Description  
1
IRQA  
Input  
(Schmitt)  
Input  
Input  
External Interrupt Request A—The IRQA input is a synchronized  
external interrupt request that indicates that an external device is  
requesting service. It can be programmed to be level-sensitive or  
negative-edge-triggered.  
1
IRQB  
Input  
(Schmitt)  
External Interrupt Request B—The IRQB input is an external  
interrupt request that indicates that an external device is requesting  
service. It can be programmed to be level-sensitive or  
negative-edge-triggered.  
56F807 Technical Data Technical Data, Rev. 15  
12  
Freescale Semiconductor  
GPIO Signals  
Table 2-9 Interrupt and Program Control Signals (Continued)  
No. of  
Pins  
Signal  
Name  
Signal  
Type  
State During  
Reset  
Signal Description  
1
RSTO  
Output  
Output  
Reset Output—This output reflects the internal reset state of the  
chip.  
1
RESET  
Input  
(Schmitt)  
Input  
Reset—This input is a direct hardware reset on the processor. When  
RESET is asserted low, the device is initialized and placed in the  
Reset state. A Schmitt trigger input is used for noise immunity. When  
the RESET pin is deasserted, the initial chip operating mode is  
latched from the EXTBOOT pin. The internal reset signal will be  
deasserted synchronous with the internal clocks, after a fixed number  
of internal clocks.  
To ensure complete hardware reset, RESET and TRST should be  
asserted together. The only exception occurs in a debugging  
environment when a hardware device reset is required and it is  
necessary not to reset the OnCE/JTAG module. In this case, assert  
RESET, but do not assert TRST.  
1
EXTBOOT  
Input  
Input  
External Boot—This input is tied to VDD to force device to boot from  
(Schmitt)  
off-chip memory. Otherwise, it is tied to VSS.  
2.6 GPIO Signals  
Table 2-10 Dedicated General Purpose Input/Output (GPIO) Signals  
No.of  
Pins  
Signal  
Name  
Signal  
Type  
State During  
Reset  
Signal Description  
8
GPIOB0-  
GPIOB7  
Input  
or  
Output  
Input  
Port B GPIO—These eight pins are dedicated General Purpose I/O  
(GPIO) pins that can individually be programmed as input or output  
pins.  
After reset, the default state is GPIO input.  
6
GPIOD0-  
GPIOD5  
Input  
or  
Input  
Port D GPIO—These six pins are dedicated GPIO pins that can  
individually be programmed as an input or output pins.  
Output  
After reset, the default state is GPIO input.  
56F807 Technical Data Technical Data, Rev. 15  
Freescale Semiconductor  
13  
2.7 Pulse Width Modulator (PWM) Signals  
Table 2-11 Pulse Width Modulator (PWMA and PWMB) Signals  
No.of  
Pins  
Signal  
Name  
Signal  
Type  
State During  
Reset  
Signal Description  
6
3
PWMA0-5  
ISA0-2  
Output  
Tri- stated  
Input  
PWMA0-5— Six PWMA output pins.  
Input  
(Schmitt)  
ISA0-2— These three input current status pins are used for  
top/bottom pulse width correction in complementary channel  
operation for PWMA.  
4
FAULTA0-3  
Input  
(Schmitt)  
Input  
FAULTA0-3— These Fault input pins are used for disabling  
selected PWMA outputs in cases where fault conditions originate  
off-chip.  
6
3
PWMB0-5  
ISB0-2  
Output  
Tri- stated  
Input  
PWMB0-5— Six PWMB output pins.  
Input  
(Schmitt)  
ISB0-2— These three input current status pins are used for  
top/bottom pulse width correction in complementary channel  
operation for PWMB.  
4
FAULTB0-3  
Input  
(Schmitt)  
Input  
FAULTB0-3— These four Fault input pins are used for disabling  
selected PWMB outputs in cases where fault conditions originate  
off-chip.  
56F807 Technical Data Technical Data, Rev. 15  
14  
Freescale Semiconductor  
Serial Peripheral Interface (SPI) Signals  
2.8 Serial Peripheral Interface (SPI) Signals  
Table 2-12 Serial Peripheral Interface (SPI) Signals  
No. of  
Pins  
Signal  
Name  
Signal  
Type  
State During  
Reset  
Signal Description  
1
MISO  
Input/  
Output  
Input  
SPI Master In/Slave Out (MISO)—This serial data pin is an input to a  
master device and an output from a slave device. The MISO line of a  
slave device is placed in the high-impedance state if the slave device is  
not selected.  
GPIOE6 Input/Outp  
Input  
Input  
Port E GPIO—This pin is a General Purpose I/O (GPIO) pin that can  
individually be programmed as input or output pin.  
ut  
After reset, the default state is MISO.  
1
MOSI  
Input/  
SPI Master Out/Slave In (MOSI)—This serial data pin is an output from  
a master device and an input to a slave device. The master device  
places data on the MOSI line a half-cycle before the clock edge that the  
slave device uses to latch the data.  
Output  
GPIOE5 Input/Outp  
Input  
Port E GPIO—This pin is a General Purpose I/O (GPIO) pin that can  
ut  
individually be programmed as input or output pin.  
After reset, the default state is MOSI.  
1
SCLK  
Input/Outp  
ut  
Input  
Input  
SPI Serial Clock—In master mode, this pin serves as an output,  
clocking slaved listeners. In slave mode, this pin serves as the data  
clock input.  
GPIOE4 Input/Outp  
Port E GPIO—This pin is a General Purpose I/O (GPIO) pin that can  
ut  
individually be programmed as input or output pin.  
After reset, the default state is SCLK.  
1
SS  
Input  
Input  
Input  
SPI Slave Select—In master mode, this pin is used to arbitrate multiple  
masters. In slave mode, this pin is used to select the slave.  
GPIOE7 Input/Outp  
Port E GPIO—This pin is a General Purpose I/O (GPIO) pin that can  
ut  
individually be programmed as input or output pin.  
After reset, the default state is SS.  
56F807 Technical Data Technical Data, Rev. 15  
Freescale Semiconductor  
15  
2.9 Quadrature Decoder Signals  
Table 2-13 Quadrature Decoder (Quad Dec0 and Quad Dec1) Signals  
No. of  
Pins  
Signal  
Name  
Signal  
Type  
State During  
Reset  
Signal Description  
1
1
1
1
1
1
1
1
PHASEA0  
Input  
Input  
Phase A—Quadrature Decoder #0 PHASEA input  
TA0  
Input/Output  
Input  
Input  
Input  
TA0—Timer A Channel 0  
PHASEB0  
Phase B—Quadrature Decoder #0 PHASEB input  
TA1  
Input/Output  
Input  
Input  
Input  
TA1—Timer A Channel 1  
INDEX0  
Index—Quadrature Decoder #0 INDEX input  
TA2  
Input/Output  
Input  
Input  
Input  
TA2—Timer A Channel 2  
HOME0  
Home—Quadrature Decoder #0 HOME input  
TA3  
Input/Output  
Input  
Input  
Input  
TA3—Timer A Channel 3  
PHASEA1  
Phase A—Quadrature Decoder #1 PHASEA input  
TB0  
Input/Output  
Input  
Input  
Input  
TB0—Timer B Channel 0  
PHASEB1  
Phase B—Quadrature Decoder #1 PHASEB input  
TB1  
Input/Output  
Input  
Input  
Input  
TB1—Timer B Channel 1  
INDEX1  
Index—Quadrature Decoder #1 INDEX input  
TB2  
Input/Output  
Input  
Input  
Input  
TB2—Timer B Channel 2  
HOME1  
Home—Quadrature Decoder #1 HOME input  
TB3  
Input/Output  
Input  
TB3—Timer B Channel 3  
56F807 Technical Data Technical Data, Rev. 15  
16  
Freescale Semiconductor  
Serial Communications Interface (SCI) Signals  
2.10 Serial Communications Interface (SCI) Signals  
Table 2-14 Serial Peripheral Interface (SPI) Signals  
No. of  
Pins  
Signal  
Name  
Signal  
Type  
State During  
Reset  
Signal Description  
1
MISO  
Input/  
Output  
Input  
SPI Master In/Slave Out (MISO)—This serial data pin is an input to a  
master device and an output from a slave device. The MISO line of a  
slave device is placed in the high-impedance state if the slave device is  
not selected.  
GPIOE6 Input/Outp  
Input  
Input  
Port E GPIO—This pin is a General Purpose I/O (GPIO) pin that can  
individually be programmed as input or output pin.  
ut  
After reset, the default state is MISO.  
1
MOSI  
Input/  
SPI Master Out/Slave In (MOSI)—This serial data pin is an output from  
a master device and an input to a slave device. The master device  
places data on the MOSI line a half-cycle before the clock edge that the  
slave device uses to latch the data.  
Output  
GPIOE5 Input/Outp  
Input  
Port E GPIO—This pin is a General Purpose I/O (GPIO) pin that can  
ut  
individually be programmed as input or output pin.  
After reset, the default state is MOSI.  
1
SCLK  
Input/Outp  
ut  
Input  
Input  
SPI Serial Clock—In master mode, this pin serves as an output,  
clocking slaved listeners. In slave mode, this pin serves as the data  
clock input.  
GPIOE4 Input/Outp  
Port E GPIO—This pin is a General Purpose I/O (GPIO) pin that can  
ut  
individually be programmed as input or output pin.  
After reset, the default state is SCLK.  
1
SS  
Input  
Input  
Input  
SPI Slave Select—In master mode, this pin is used to arbitrate multiple  
masters. In slave mode, this pin is used to select the slave.  
GPIOE7 Input/Outp  
Port E GPIO—This pin is a General Purpose I/O (GPIO) pin that can  
ut  
individually be programmed as input or output pin.  
After reset, the default state is SS.  
56F807 Technical Data Technical Data, Rev. 15  
Freescale Semiconductor  
17  
Table 2-15 Serial Communications Interface (SCI0 and SCI1) Signals  
No. of  
Pins  
Signal  
Name  
Signal  
Type  
State During  
Reset  
Signal Description  
1
1
1
1
TXD0  
Output  
Input  
Input  
Transmit Data (TXD0)—transmit data output  
GPIOE0  
Input/Outp  
ut  
Port E GPIO—This pin is a General Purpose I/O (GPIO) pin that  
can individually be programmed as input or output pin.  
After reset, the default state is SCI output.  
RXD0  
Input  
Input  
Input  
Receive Data (RXD0)— receive data input  
GPIOE1  
Input/Outp  
ut  
Port E GPIO—This pin is a General Purpose I/O (GPIO) pin that  
can individually be programmed as input or output pin.  
After reset, the default state is SCI input.  
TXD1  
Output  
Input  
Input  
Transmit Data (TXD1)—transmit data output  
GPIOD6  
Input/Outp  
ut  
Port D GPIO—This pin is a General Purpose I/O (GPIO) pin that  
can individually be programmed as input or output pin.  
After reset, the default state is SCI output.  
RXD1  
Input  
Input  
Input  
Receive Data (RXD1)— receive data input  
GPIOD7  
Input/Outp  
ut  
Port D GPIO—This pin is a General Purpose I/O (GPIO) pin that  
can individually be programmed as input or output pin.  
After reset, the default state is SCI input.  
2.11 CAN Signals  
Table 2-16 CAN Module Signals  
No. of  
Pins  
Signal  
Name  
Signal  
Type  
State During  
Signal Description  
Reset  
1
MSCAN_ RX  
Input  
Input  
MSCAN Receive Data—MSCAN input. This pin has an internal  
(Schmitt)  
pull-up resistor.  
1
MSCAN_ TX  
Output  
Output  
MSCAN Transmit Data—MSCAN output. CAN output is  
open-drain output and pull-up resistor is needed.  
56F807 Technical Data Technical Data, Rev. 15  
18  
Freescale Semiconductor  
Analog-to-Digital Converter (ADC) Signals  
2.12 Analog-to-Digital Converter (ADC) Signals  
Table 2-17 Analog to Digital Converter Signals  
No. of  
Pins  
Signal  
Name  
Signal  
Type  
State During  
Reset  
Signal Description  
4
4
2
ANA0-3  
ANA4-7  
VREF  
Input  
Input  
Input  
Input  
Input  
Input  
ANA0-3—Analog inputs to ADCA channel 1  
ANA4-7—Analog inputs to ADCA channel 2  
VREF—Analog reference voltage for ADC. Must be set to  
VDDA-0.3V for optimal performance.  
4
4
ANB0-3  
ANB4-7  
Input  
Input  
Input  
Input  
ANB0-3—Analog inputs to ADCB, channel 1  
ANB4-7—Analog inputs to ADCB, channel 2  
2.13 Quad Timer Module Signals  
Table 2-18 Quad Timer Module Signals  
No. of  
Pins  
Signal  
Name  
State During  
Signal Type  
Signal Description  
Reset  
2
4
TC0-1  
TD0-3  
Input/Output  
Input/Output  
Input  
Input  
TC0-1—Timer C Channels 0 and 1  
TD0-3—Timer D Channels 0, 1, 2, and 3  
56F807 Technical Data Technical Data, Rev. 15  
Freescale Semiconductor  
19  
2.14 JTAG/OnCE  
Table 2-19 JTAG/On-Chip Emulation (OnCE) Signals  
No. of  
Pins  
Signal  
Name  
Signal  
Type  
State During  
Reset  
Signal Description  
1
TCK  
Input  
(Schmitt)  
Input, pulled Test Clock Input—This input pin provides a gated clock to synchronize  
low internally the test logic and shift serial data to the JTAG/OnCE port. The pin is  
connected internally to a pull-down resistor.  
1
TMS  
Input  
(Schmitt)  
Input, pulled Test Mode Select Input—This input pin is used to sequence the JTAG  
high internally TAP controller’s state machine. It is sampled on the rising edge of TCK  
and has an on-chip pull-up resistor.  
Note: Always tie the TMS pin to VDD through a 2.2K resistor.  
1
1
1
TDI  
TDO  
TRST  
Input  
(Schmitt)  
Input, pulled Test Data Input—This input pin provides a serial input data stream to  
high internally the JTAG/OnCE port. It is sampled on the rising edge of TCK and has an  
on-chip pull-up resistor.  
Output  
Tri-stated  
Test Data Output—This tri-statable output pin provides a serial output  
data stream from the JTAG/OnCE port. It is driven in the Shift-IR and  
Shift-DR controller states, and changes on the falling edge of TCK.  
Input  
(Schmitt)  
Input, pulled Test Reset—As an input, a low signal on this pin provides a reset signal  
high internally to the JTAG TAP controller. To ensure complete hardware reset, TRST  
should be asserted at power-up and whenever RESET is asserted. The  
only exception occurs in a debugging environment when a hardware  
device reset is required and it is necessary not to reset the OnCE/JTAG  
module. In this case, assert RESET, but do not assert TRST.  
Note: For normal operation, connect TRST directly to VSS. If the design is to  
be used in a debugging environment, TRST may be tied to VSS through a 1K  
resistor.  
1
DE  
Output  
Output  
Debug Event—DE provides a low pulse on recognized debug events.  
Part 3 Specifications  
3.1 General Characteristics  
The 56F807 is fabricated in high-density CMOS with 5V-tolerant TTL-compatible digital inputs. The term  
“5V-tolerant” refers to the capability of an I/O pin, built on a 3.3V compatible process technology, to  
withstand a voltage up to 5.5V without damaging the device. Many systems have a mixture of devices  
designed for 3.3V and 5V power supplies. In such systems, a bus may carry both 3.3V and 5V-compatible  
I/O voltage levels (a standard 3.3V I/O is designed to receive a maximum voltage of 3.3V ± 10% during  
normal operation without causing damage). This 5V-tolerant capability therefore offers the power savings  
of 3.3V I/O levels while being able to receive 5V levels without being damaged.  
Absolute maximum ratings given in Table 3-1 are stress ratings only, and functional operation at the  
maximum is not guaranteed. Stress beyond these ratings may affect device reliability or cause permanent  
56F807 Technical Data Technical Data, Rev. 15  
20  
Freescale Semiconductor  
General Characteristics  
damage to the device.  
The 56F807 DC/AC electrical specifications are preliminary and are from design simulations. These  
specifications may not be fully tested or guaranteed at this early stage of the product life cycle. Finalized  
specifications will be published after complete characterization and device qualifications have been  
completed.  
CAUTION  
This device contains protective circuitry to guard against  
damage due to high static voltage or electrical fields. However,  
normal precautions are advised to avoid application of any  
voltages higher than maximum rated voltages to this  
high-impedance circuit. Reliability of operation is enhanced if  
unused inputs are tied to an appropriate voltage level.  
Table 3-1 Absolute Maximum Ratings  
Characteristic  
Symbol  
VDD  
VIN  
Min  
VSS – 0.3  
VSS – 0.3  
- 0.3  
Max  
VSS + 4.0  
VSS + 5.5V  
0.3  
Unit  
V
Supply voltage  
All other input voltages, excluding Analog inputs  
Voltage difference VDD to VDDA  
V
ΔVDD  
ΔVSS  
VIN  
V
Voltage difference VSS to VSSA  
- 0.3  
0.3  
V
Analog inputs, ANA0-7 and VREF  
Analog inputs EXTAL and XTAL  
VSSA– 0.3  
VSSA– 0.3  
VDDA+ 0.3  
VSSA+ 3.0  
10  
V
VIN  
V
Current drain per pin excluding VDD, VSS, PWM  
outputs, TCS, VPP, VDDA, VSSA  
I
mA  
Table 3-2 Recommended Operating Conditions  
Characteristic  
Supply voltage, digital  
Symbol  
VDD  
Min  
3.0  
Typ  
3.3  
3.3  
-
Max  
3.6  
3.6  
0.1  
Unit  
V
V
V
Supply Voltage, analog  
VDDA  
ΔVDD  
3.0  
Voltage difference VDD to VDDA  
-0.1  
56F807 Technical Data Technical Data, Rev. 15  
Freescale Semiconductor  
21  
Table 3-2 Recommended Operating Conditions  
Characteristic  
Symbol  
ΔVSS  
VREF  
TA  
Min  
-0.1  
2.7  
Typ  
Max  
0.1  
Unit  
V
Voltage difference VSS to VSSA  
-
ADC reference voltage  
VDDA  
85  
V
Ambient operating temperature  
–40  
°C  
6
Table 3-3 Thermal Characteristics  
Value  
Characteristic  
Symbol  
Unit  
Notes  
Comments  
160-pin  
LQFP  
160  
MBGA  
Junction to ambient  
Natural convection  
RθJA  
38.5  
63.4  
°C/W  
2
Junction to ambient (@1m/sec)  
RθJMA  
35.4  
33  
60.3  
49.9  
°C/W  
°C/W  
2
Junction to ambient  
Natural convection  
Four layer  
board (2s2p)  
RθJMA  
(2s2p)  
1,2  
Junction to ambient (@1m/sec)  
Four layer  
RθJMA  
31.5  
46.8  
°C/W  
1,2  
board (2s2p)  
Junction to case  
RθJC  
ΨJT  
8.6  
0.8  
8.1  
0.6  
°C/W  
°C/W  
W
3
Junction to center of case  
I/O pin power dissipation  
Power dissipation  
4, 5  
P I/O  
P D  
User Determined  
P D = (IDD x VDD + P I/O  
(TJ - TA) /RθJA  
)
W
Junction to center of case  
PDMAX  
W
7
Notes:  
1. Theta-JA determined on 2s2p test boards is frequently lower than would be observed in an application.  
Determined on 2s2p thermal test board.  
2. Junction to ambient thermal resistance, Theta-JA (RθJA) was simulated to be equivalent to the JEDEC  
specification JESD51-2 in a horizontal configuration in natural convection. Theta-JA was also simulated on  
a thermal test board with two internal planes (2s2p where “s” is the number of signal layers and “p” is the  
number of planes) per JESD51-6 and JESD51-7. The correct name for Theta-JA for forced convection or with  
the non-single layer boards is Theta-JMA.  
3. Junction to case thermal resistance, Theta-JC (RθJC ), was simulated to be equivalent to the measured values  
using the cold plate technique with the cold plate temperature used as the “case” temperature. The basic cold  
plate measurement technique is described by MIL-STD 883D, Method 1012.1. This is the correct thermal  
metric to use to calculate thermal performance when the package is being used with a heat sink.  
56F807 Technical Data Technical Data, Rev. 15  
22  
Freescale Semiconductor  
DC Electrical Characteristics  
4. Thermal Characterization Parameter, Psi-JT (ΨJT ), is the “resistance” from junction to reference point  
thermocouple on top center of case as defined in JESD51-2. ΨJT is a useful value to use to estimate junction  
temperature in steady state customer environments.  
5. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and  
board thermal resistance.  
6. See Section 5.1 from more details on thermal design considerations.  
7. TJ = Junction Temperature  
TA = Ambient Temperature  
3.2 DC Electrical Characteristics  
Table 3-4 DC Electrical Characteristics  
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6 V, TA = –40° to +85°C, CL 50pF, fop = 80MHz  
Characteristic  
Input high voltage (XTAL/EXTAL)  
Symbol  
VIHC  
VILC  
VIHS  
VILS  
VIH  
Min  
2.25  
0
Typ  
30  
Max  
2.75  
0.5  
5.5  
0.8  
5.5  
0.8  
1
Unit  
V
Input low voltage (XTAL/EXTAL)  
V
Input high voltage (Schmitt trigger inputs)1  
2.2  
-0.3  
2.0  
-0.3  
-1  
V
Input low voltage (Schmitt trigger inputs)1  
Input high voltage (all other digital inputs)  
V
V
Input low voltage (all other digital inputs)  
VIL  
V
Input current high (pullup/pulldown resistors disabled, VIN=VDD  
)
IIH  
μA  
μA  
μA  
μA  
μA  
μA  
KΩ  
μA  
μA  
μA  
Input current low (pullup/pulldown resistors disabled, VIN=VSS  
Input current high (with pullup resistor, VIN=VDD  
Input current low (with pullup resistor, VIN=VSS  
Input current high (with pulldown resistor, VIN=VDD  
)
IIL  
-1  
1
)
IIHPU  
IILPU  
IIHPD  
IILPD  
-1  
1
)
-210  
20  
-50  
180  
1
)
Input current low (with pulldown resistor, VIN=VSS  
Nominal pullup or pulldown resistor value  
Output tri-state current low  
)
-1  
R
PU, RPD  
IOZL  
-10  
-10  
-15  
10  
10  
15  
Output tri-state current high  
IOZH  
2
IIHA  
Input current high (analog inputs, VIN=VDDA  
)
3
IILA  
-15  
15  
μA  
Input current low (analog inputs, VIN=VSSA  
)
Output High Voltage (at IOH)  
VOH  
VDD – 0.7  
V
56F807 Technical Data Technical Data, Rev. 15  
Freescale Semiconductor  
23  
Table 3-4 DC Electrical Characteristics (Continued)  
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6 V, TA = –40° to +85°C, CL 50pF, fop = 80MHz  
Characteristic  
Output Low Voltage (at IOL)  
Symbol  
VOL  
Min  
4
Typ  
8
Max  
0.4  
Unit  
V
Output source current  
Output source current  
IOH  
mA  
mA  
mA  
mA  
pF  
IOL  
4
PWM pin output source current3  
IOHP  
IOLP  
CIN  
10  
16  
PWM pin output sink current4  
Input capacitance  
Output capacitance  
COUT  
12  
pF  
5
VDD supply current  
IDDT  
Run 6  
195  
170  
220  
200  
mA  
mA  
Wait7  
Stop  
115  
2.7  
145  
3.0  
mA  
V
Low Voltage Interrupt, external power supply8  
Low Voltage Interrupt, internal power supply9  
Power on Reset10  
VEIO  
VEIC  
2.4  
2.0  
2.2  
1.7  
2.4  
2.0  
V
V
VPOR  
1. Schmitt Trigger inputs are: EXTBOOT, IRQA, IRQB, RESET, TCS, ISA0-2, FAULTA0-3, ISB0-2, FAULTB0-3, TCK, TRST, TMS,  
TDI, and MSCAN_RX  
2. Analog inputs are: ANA[0:7], XTAL and EXTAL. Specification assumes ADC is not sampling.  
3. PWM pin output source current measured with 50% duty cycle.  
4. PWM pin output sink current measured with 50% duty cycle.  
5. IDDT = IDD + IDDA (Total supply current for VDD + VDDA  
)
6. Run (operating) IDD measured using 8MHz clock source. All inputs 0.2V from rail; outputs unloaded. All ports configured as inputs;  
measured with all modules enabled.  
7. Wait IDD measured using external square wave clock source (fosc = 8MHz) into XTAL; all inputs 0.2V from rail; no DC loads; less  
than 50pF on all outputs. CL = 20pF on EXTAL; all ports configured as inputs; EXTAL capacitance linearly affects wait IDD; measured  
with PLL enabled.  
8. This low voltage interrupt monitors the VDDA external power supply. VDDA is generally connected to the same potential as VDD via  
separate traces. If VDDA drops below VEIO, an interrupt is generated. Functionality of the device is guaranteed under transient condi-  
tions when VDDA>VEIO (between the minimum specified VDD and the point when the VEIO interrupt is generated).  
9. This low voltage interrupt monitors the internally regulated core power supply. If the output from the internal voltage is regulator  
drops below VEIC, an interrupt is generated. Since the core logic supply is internally regulated, this interrupt will not be generated unless  
the external power supply drops below the minimum specified value (3.0V).  
10. Poweron reset occurs whenever the internally regulated 2.5V digital supply drops below 1.5V typical. While power is ramping up,  
this signal remains active as long as the internal 2.5V is below 1.5V typical, no matter how long the ramp-up rate is. The internally  
regulated voltage is typically 100mV less than VDD during ramp-up until 2.5V is reached, at which time it self-regulates.  
56F807 Technical Data Technical Data, Rev. 15  
24  
Freescale Semiconductor  
AC Electrical Characteristics  
250  
200  
150  
100  
50  
IDD Analog  
IDD Total  
IDD Digital  
0
10  
20  
60  
70  
80  
50  
30  
40  
Freq. (MHz)  
Figure 3-1 Maximum Run IDD vs. Frequency (see Note 6. in Table 3-14)  
3.3 AC Electrical Characteristics  
Timing waveforms in Section 3.3 are tested using the VIL and VIH levels specified in the DC Characteristics  
table. In Figure 3-2 the levels of VIH and VIL for an input signal are shown.  
Low  
VIL  
High  
VIH  
90%  
50%  
10%  
Input Signal  
Midpoint1  
Fall Time  
Note: The midpoint is VIL + (VIH – VIL)/2.  
Rise Time  
Figure 3-2 Input Signal Measurement References  
Figure 3-3 shows the definitions of the following signal states:  
Active state, when a bus or signal is driven, and enters a low impedance state  
Tri-stated, when a bus or signal is placed in a high impedance state  
Data Valid state, when a signal level has reached VOL or VOH  
Data Invalid state, when a signal level is in transition between VOL and VOH  
56F807 Technical Data Technical Data, Rev. 15  
Freescale Semiconductor  
25  
Data2 Valid  
Data2  
Data1 Valid  
Data1  
Data3 Valid  
Data3  
Data  
Tri-stated  
Data Invalid State  
Data Active  
Data Active  
Figure 3-3 Signal States  
Table 3-5 Flash Memory Truth Table  
XE1  
YE2  
SE3  
OE4  
PROG5  
ERASE6  
MAS17  
NVSTR8  
Mode  
Standby  
Read  
L
L
H
H
L
L
H
L
L
L
L
H
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
H
H
H
H
Word Program  
Page Erase  
Mass Erase  
L
H
H
H
H
H
L
1. X address enable, all rows are disabled when XE=0  
2. Y address enable, YMUX is disabled when YE=0  
3. Sense amplifier enable  
4. Output enable, tri-state Flash data out bus when OE=0  
5. Defines program cycle  
6. Defines erase cycle  
7. Defines mass erase cycle, erase whole block  
8. Defines non-volatile store cycle  
Table 3-6 IFREN Truth Table  
Mode  
IFREN=1  
IFREN=0  
Read  
Read information block  
Program information block  
Erase information block  
Erase both block  
Read main memory block  
Program main memory block  
Erase main memory block  
Erase main memory block  
Word program  
Page erase  
Mass erase  
56F807 Technical Data Technical Data, Rev. 15  
26  
Freescale Semiconductor  
AC Electrical Characteristics  
Table 3-7 Flash Timing Parameters  
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6V, TA = –40° to +85°C, CL 50pF  
Characteristic  
Program time  
Symbol  
Min  
20  
Typ  
Max  
Unit  
us  
Figure  
Figure 3-4  
Figure 3-5  
Figure 3-6  
Tprog*  
Terase*  
Tme*  
Erase time  
20  
ms  
Mass erase time  
100  
10,000  
10  
ms  
Endurance1  
ECYC  
20,000  
30  
cycles  
years  
Data Retention1  
DRET  
The following parameters should only be used in the Manual Word Programming Mode  
PROG/ERASE to NVSTR set  
up time  
5
5
us  
us  
Figure 3-4,  
Figure 3-5,  
Figure 3-6  
Tnvs*  
NVSTR hold time  
Figure 3-4,  
Figure 3-5  
Tnvh*  
NVSTR hold time (mass erase)  
NVSTR to program set up time  
Recovery time  
100  
10  
1
us  
us  
us  
Figure 3-6  
Figure 3-4  
Tnvh1*  
Tpgs*  
Trcv*  
Figure 3-4,  
Figure 3-5,  
Figure 3-6  
Cumulative program  
HV period2  
3
ms  
Figure 3-4  
Thv  
Program hold time3  
Figure 3-4  
Figure 3-4  
Figure 3-4  
Tpgh  
Tads  
Tadh  
Address/data set up time3  
Address/data hold time3  
1. One cycle is equal to an erase program and read.  
2. Thv is the cumulative high voltage programming time to the same row before next erase. The same address cannot be  
programmed twice before next erase.  
3. Parameters are guaranteed by design in smart programming mode and must be one cycle or greater.  
*The Flash interface unit provides registers for the control of these parameters.  
56F807 Technical Data Technical Data, Rev. 15  
Freescale Semiconductor  
27  
IFREN  
XADR  
XE  
Tadh  
YADR  
YE  
DIN  
Tads  
PROG  
NVSTR  
Tnvs  
Tprog  
Tpgh  
Tpgs  
Tnvh  
Trcv  
Thv  
Figure 3-4 Flash Program Cycle  
IFREN  
XADR  
XE  
YE=SE=OE=MAS1=0  
ERASE  
NVSTR  
Tnvs  
Tnvh  
Trcv  
Terase  
Figure 3-5 Flash Erase Cycle  
56F807 Technical Data Technical Data, Rev. 15  
28  
Freescale Semiconductor  
External Clock Operation  
IFREN  
XADR  
XE  
MAS1  
YE=SE=OE=0  
ERASE  
NVSTR  
Tnvs  
Tnvh1  
Trcv  
Tme  
Figure 3-6 Flash Mass Erase Cycle  
3.4 External Clock Operation  
The 56F807 system clock can be derived from an external crystal or an external system clock signal. To  
generate a reference frequency using the internal oscillator, a reference crystal must be connected between  
the EXTAL and XTAL pins.  
3.4.1  
Crystal Oscillator  
The internal oscillator is also designed to interface with a parallel-resonant crystal resonator in the  
frequency range specified for the external crystal in Table 3-9. In Figure 3-7 a recommended crystal  
oscillator circuit is shown. Follow the crystal supplier’s recommendations when selecting a crystal, since  
crystal parameters determine the component values required to provide maximum stability and reliable  
start-up. The crystal and associated components should be mounted as close as possible to the EXTAL  
and XTAL pins to minimize output distortion and start-up stabilization time. The internal 56F80x  
oscillator circuitry is designed to have no external load capacitors present. As shown in Figure 3-8 no  
external load capacitors should be used.  
The 56F80x components internally are modeled as a parallel resonant oscillator circuit to provide a  
capacitive load on each of the oscillator pins (XTAL and EXTAL) of 10pF to 13pF over temperature and  
process variations. Using a typical value of internal capacitance on these pins of 12pF and a value of 3pF  
56F807 Technical Data Technical Data, Rev. 15  
Freescale Semiconductor  
29  
as a typical circuit board trace capacitance the parallel load capacitance presented to the crystal is 9pF as  
determined by the following equation:  
CL1 * CL2  
CL1 + CL2  
12 * 12  
12 + 12  
CL =  
+ Cs =  
+ 3 = 6 + 3 = 9pF  
This is the value load capacitance that should be used when selecting a crystal and determining the actual  
frequency of operation of the crystal oscillator circuit.  
Recommended External Crystal  
Parameters:  
EXTAL XTAL  
Rz  
fc  
Rz = 1 to 3 MΩ  
fc = 8MHz (optimized for 8MHz)  
Figure 3-7 Connecting to a Crystal Oscillator  
3.4.2  
Ceramic Resonator  
It is also possible to drive the internal oscillator with a ceramic resonator, assuming the overall system  
design can tolerate the reduced signal integrity. In Figure 3-8, a typical ceramic resonator circuit is  
shown. Refer to supplier’s recommendations when selecting a ceramic resonator and associated  
components. The resonator and components should be mounted as close as possible to the EXTAL and  
XTAL pins. The internal 56F80x oscillator circuitry is designed to have no external load capacitors  
present. As shown in Figure 3-7 no external load capacitors should be used.  
Recommended Ceramic Resonator  
EXTAL XTAL  
Parameters:  
Rz = 1 to 3 MΩ  
Rz  
fc = 8MHz (optimized for 8MHz)  
fc  
Figure 3-8 Connecting a Ceramic Resonator  
Note: Freescale recommends only two terminal ceramic resonators vs. three terminal resonators  
(which contain an internal bypass capacitor to ground).  
56F807 Technical Data Technical Data, Rev. 15  
30  
Freescale Semiconductor  
External Clock Operation  
3.4.3  
External Clock Source  
The recommended method of connecting an external clock is given in Figure 3-9. The external clock  
source is connected to XTAL and the EXTAL pin is grounded.  
56F807  
XTAL  
EXTAL  
V
External  
Clock  
SS  
Figure 3-9 Connecting an External Clock Signal  
5
Table 3-8 External Clock Operation Timing Requirements  
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6 V, TA = –40° to +85°C  
Characteristic  
Symbol  
fosc  
Min  
0
Typ  
Max  
80  
Unit  
MHz  
ns  
Frequency of operation (external clock driver)1  
Clock Pulse Width2, 3  
tPW  
6.25  
1. See Figure 3-9 for details on using the recommended connection of an external clock driver.  
2. The high or low pulse width must be no smaller than 6.25ns or the chip will not function.  
3. Parameters listed are guaranteed by design.  
VIH  
External  
Clock  
90%  
50%  
10%  
90%  
50%  
10%  
VIL  
tPW  
tPW  
Note: The midpoint is VIL + (VIH – VIL)/2.  
Figure 3-10 External Clock Timing  
56F807 Technical Data Technical Data, Rev. 15  
Freescale Semiconductor  
31  
3.4.4  
Phase Locked Loop Timing  
Table 3-9 PLL Timing  
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6 V, TA = –40° to +85°C  
Characteristic  
Symbol  
fosc  
Min  
4
Typ  
8
Max  
10  
Unit  
MHz  
MHz  
ms  
External reference crystal frequency for the PLL1  
PLL output frequency2  
fout/2  
tplls  
40  
110  
10  
PLL stabilization time3 0o to +85oC  
PLL stabilization time3 -40o to 0oC  
1
tplls  
100  
200  
ms  
1. An externally supplied reference clock should be as free as possible from any phase jitter for the PLL to work  
correctly. The PLL is optimized for 8MHz input crystal.2.  
2. ZCLK may not exceed 80MHz. For additional information on ZCLK and fout/2, please refer to the OCCS chapter in the  
User Manual. ZCLK = fop  
3. This is the minimum time required after the PLL set-up is changed to ensure reliable operation.  
56F807 Technical Data Technical Data, Rev. 15  
32  
Freescale Semiconductor  
External Bus Asynchronous Timing  
3.5 External Bus Asynchronous Timing  
1,2  
Table 3-10 External Bus Asynchronous Timing  
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6 V, TA = –40° to +85°C, CL 50pF, fop = 80MHz  
Characteristic  
Symbol  
Unit  
Min  
Max  
Address Valid to WR Asserted  
tAWR  
tWR  
6.5  
ns  
WR Width Asserted  
Wait states = 0  
Wait states > 0  
7.5  
(T*WS)+7.5  
ns  
ns  
WR Asserted to D0–D15 Out Valid  
tWRD  
tDOH  
tDOS  
T + 4.2  
ns  
ns  
Data Out Hold Time from WR Deasserted  
4.8  
Data Out Set Up Time to WR Deasserted  
Wait states = 0  
Wait states > 0  
2.2  
(T*WS)+6.4  
ns  
ns  
RD Deasserted to Address Not Valid  
tRDA  
0
ns  
Address Valid to RD Deasserted  
Wait states = 0  
Wait states > 0  
tARDD  
18.7  
(T*WS) + 18.7  
ns  
ns  
Input Data Hold to RD Deasserted  
tDRD  
tRD  
0
ns  
RD Assertion Width  
Wait states = 0  
Wait states > 0  
19  
ns  
ns  
(T*WS)+19  
Address Valid to Input Data Valid  
Wait states = 0  
Wait states > 0  
tAD  
1
ns  
ns  
(T*WS)+1  
Address Valid to RD Asserted  
tARDA  
tRDD  
-4.4  
ns  
RD Asserted to Input Data Valid  
Wait states = 0  
Wait states > 0  
2.4  
ns  
ns  
(T*WS) + 2.4  
WR Deasserted to RD Asserted  
RD Deasserted to RD Asserted  
WR Deasserted to WR Asserted  
RD Deasserted to WR Asserted  
tWRRD  
tRDRD  
tWRWR  
tRDWR  
6.8  
0
ns  
ns  
ns  
ns  
14.1  
12.8  
56F807 Technical Data Technical Data, Rev. 15  
Freescale Semiconductor  
33  
1. Timing is both wait state and frequency dependent. In the formulas listed, WS = the number of wait states and  
T = Clock Period. For 80MHz operation, T = 12.5ns.  
2. Parameters listed are guaranteed by design.  
To calculate the required access time for an external memory for any frequency < 80MHz, use this formula:  
Top = Clock period @ desired operating frequency  
WS = Number of wait states  
Memory Access Time = (Top*WS) + (Top- 11.5)  
A0–A15,  
PS, DS  
tARDD  
(See Note)  
tRDA  
tARDA  
tRDRD  
tRD  
tAWR  
tWRWR  
RD  
tWRRD  
tWR  
tRDWR  
WR  
tRDD  
tAD  
tDOH  
tWRD  
tDRD  
tDOS  
Data In  
Data Out  
D0–D15  
Note: During read-modify-write instructions and internal instructions, the address lines do not change state.  
Figure 3-11 External Bus Asynchronous Timing  
56F807 Technical Data Technical Data, Rev. 15  
34  
Freescale Semiconductor  
Reset, Stop, Wait, Mode Select, and Interrupt Timing  
3.6 Reset, Stop, Wait, Mode Select, and Interrupt Timing  
1,5  
Table 3-11 Reset, Stop, Wait, Mode Select, and Interrupt Timing  
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6 V, TA = –40° to +85°C, CL 50pF  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
3-12  
RESET Assertion to Address, Data and Control Signals  
High Impedance  
tRAZ  
21  
ns  
Minimum RESET Assertion Duration2  
OMR Bit 6 = 0  
OMR Bit 6 = 1  
tRA  
3-12  
275,000T  
128T  
ns  
ns  
RESET Deassertion to First External Address Output  
Edge-sensitive Interrupt Request Width  
tRDA  
tIRW  
tIDM  
33T  
1.5T  
15T  
34T  
ns  
ns  
ns  
3-12  
3-13  
3-14  
IRQA, IRQB Assertion to External Data Memory Access  
Out Valid, caused by first instruction execution in the  
interrupt service routine  
IRQA, IRQB Assertion to General Purpose Output Valid,  
caused by first instruction execution in the interrupt  
service routine  
tIG  
16T  
ns  
3-14  
3-15  
IRQA Low to First Valid Interrupt Vector Address Out  
recovery from Wait State3  
tIRI  
13T  
2T  
ns  
ns  
IRQA Width Assertion to Recover from Stop State4  
tIW  
tIF  
3-16  
3-16  
Delay from IRQA Assertion to Fetch of first instruction  
(exiting Stop)  
OMR Bit 6 = 0  
OMR Bit 6 = 1  
275,000T  
12T  
ns  
ns  
Duration for Level Sensitive IRQA Assertion to Cause  
the Fetch of First IRQA Interrupt Instruction (exiting Stop)  
OMR Bit 6 = 0  
tIRQ  
3-17  
3-17  
275,000T  
12T  
ns  
ns  
OMR Bit 6 = 1  
Delay from Level Sensitive IRQA Assertion to First  
Interrupt Vector Address Out Valid (exiting Stop)  
OMR Bit 6 = 0  
tII  
275,000T  
12T  
ns  
ns  
OMR Bit 6 = 1  
1. In the formulas, T = clock cycle. For an operating frequency of 80MHz, T = 12.5ns.  
2. Circuit stabilization delay is required during reset when using an external clock or crystal oscillator in two cases:  
• After power-on reset  
• When recovering from Stop state  
3. The minimum is specified for the duration of an edge-sensitive IRQA interrupt required to recover from the Stop state. This is  
not the minimum required so that the IRQA interrupt is accepted.  
4. The interrupt instruction fetch is visible on the pins only in Mode 3.  
5. Parameters listed are guaranteed by design.  
56F807 Technical Data Technical Data, Rev. 15  
Freescale Semiconductor  
35  
RESET  
tRA  
tRAZ  
tRDA  
First Fetch  
A0–A15,  
D0–D15  
PS, DS,  
RD, WR  
First Fetch  
Figure 3-12 Asynchronous Reset Timing  
IRQA,  
IRQB  
tIRW  
Figure 3-13 External Interrupt Timing (Negative-Edge-Sensitive)  
A0–A15,  
PS, DS,  
RD, WR  
First Interrupt Instruction Execution  
tIDM  
IRQA,  
IRQB  
a) First Interrupt Instruction Execution  
General  
Purpose  
I/O Pin  
tIG  
IRQA,  
IRQB  
b) General Purpose I/O  
Figure 3-14 External Level-Sensitive Interrupt Timing  
56F807 Technical Data Technical Data, Rev. 15  
36  
Freescale Semiconductor  
Reset, Stop, Wait, Mode Select, and Interrupt Timing  
IRQA,  
IRQB  
tIRI  
A0–A15,  
PS, DS,  
RD, WR  
First Interrupt Vector  
Instruction Fetch  
Figure 3-15 Interrupt from Wait State Timing  
tIW  
IRQA  
tIF  
A0–A15,  
PS, DS,  
RD, WR  
First Instruction Fetch  
Not IRQA Interrupt Vector  
Figure 3-16 Recovery from Stop State Using Asynchronous Interrupt Timing  
tIRQ  
IRQA  
tII  
A0–A15  
PS, DS,  
RD, WR  
First IRQA Interrupt  
Instruction Fetch  
Figure 3-17 Recovery from Stop State Using IRQA Interrupt Service  
RSTO  
tRSTO  
Figure 3-18 Reset Output Timing  
56F807 Technical Data Technical Data, Rev. 15  
Freescale Semiconductor  
37  
3.7 Serial Peripheral Interface (SPI) Timing  
1
Table 3-12 SPI Timing  
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6 V, TA = –40° to +85°C, CL 50pF, fOP = 80MHz  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
Cycle time  
Master  
Slave  
tC  
3-19-3-22  
50  
25  
ns  
ns  
Enable lead time  
Master  
Slave  
tELD  
tELG  
tCH  
tCL  
3-22  
3-22  
25  
ns  
ns  
Enable lag time  
Master  
Slave  
100  
ns  
ns  
Clock (SCK) high time  
Master  
Slave  
3-19, 3-20, 3-21,  
17.6  
12.5  
ns  
ns  
3-22  
Clock (SCK) low time  
Master  
Slave  
3-22  
24.1  
25  
ns  
ns  
Data set-up time required for inputs  
Master  
Slave  
tDS  
tDH  
tA  
3-19, 3-20, 3-21,  
20  
0
ns  
ns  
3-22  
Data hold time required for inputs  
Master  
Slave  
3-19, 3-20, 3-21,  
0
2
ns  
ns  
3-22  
Access time (time to data active from  
high-impedance state)  
Slave  
3-22  
3-22  
4.8  
3.7  
15  
ns  
ns  
Disable time (hold time to high-impedance state)  
Slave  
tD  
15.2  
Data Valid for outputs  
Master  
Slave (after enable edge)  
tDV  
3-19, 3-20, 3-21,  
4.5  
20.4  
ns  
ns  
3-22  
Data invalid  
Master  
Slave  
tDI  
tR  
tF  
3-19, 3-20, 3-21,  
0
0
ns  
ns  
3-22  
Rise time  
Master  
Slave  
3-19, 3-20, 3-21,  
11.5  
10.0  
ns  
ns  
3-22  
Fall time  
Master  
Slave  
3-19, 3-20, 3-21,  
9.7  
9.0  
ns  
ns  
3-22  
1. Parameters listed are guaranteed by design.  
56F807 Technical Data Technical Data, Rev. 15  
38  
Freescale Semiconductor  
Serial Peripheral Interface (SPI) Timing  
SS  
(Input)  
SS is held High on master  
tC  
tR  
tF  
tCL  
SCLK (CPOL = 0)  
(Output)  
tCH  
tF  
tR  
tCL  
SCLK (CPOL = 1)  
(Output)  
tDH  
tCH  
tDS  
MISO  
(Input)  
MSB in  
tDI  
Bits 14–1  
LSB in  
tDI(ref)  
tDV  
MOSI  
(Output)  
Master MSB out  
tF  
Bits 14–1  
Master LSB out  
tR  
Figure 3-19 SPI Master Timing (CPHA = 0)  
SS  
(Input)  
SS is held High on master  
tC  
tF  
tR  
tCL  
SCLK (CPOL = 0)  
(Output)  
tCH  
tF  
tCL  
SCLK (CPOL = 1)  
(Output)  
tCH  
tDS  
tR  
tDH  
MISO  
MSB in  
tDI  
Bits 14–1  
LSB in  
tDI(ref)  
(Input)  
tDV(ref)  
tDV  
Bits 14– 1  
MOSI  
(Output)  
Master MSB out  
tF  
Master LSB out  
tR  
Figure 3-20 SPI Master Timing (CPHA = 1)  
56F807 Technical Data Technical Data, Rev. 15  
Freescale Semiconductor  
39  
SS  
(Input)  
tC  
tF  
tR  
tELG  
tCL  
SCLK (CPOL = 0)  
(Input)  
tCH  
tELD  
tCL  
SCLK (CPOL = 1)  
(Input)  
tCH  
tA  
tF  
tD  
tR  
MISO  
(Output)  
Slave MSB out  
Bits 14–1  
tDV  
Slave LSB out  
tDI  
tDS  
tDI  
tDH  
MOSI  
(Input)  
MSB in  
Bits 14–1  
LSB in  
Figure 3-21 SPI Slave Timing (CPHA = 0)  
SS  
(Input)  
tF  
tC  
tR  
tCL  
SCLK (CPOL = 0)  
(Input)  
tCH  
tELG  
tELD  
tCL  
SCLK (CPOL = 1)  
(Input)  
tDV  
tCH  
tR  
tA  
tD  
Slave LSB out  
tDI  
LSB in  
tF  
MISO  
(Output)  
Slave MSB out  
Bits 14–1  
tDV  
tDS  
tDH  
MOSI  
(Input)  
MSB in  
Bits 14–1  
Figure 3-22 SPI Slave Timing (CPHA = 1)  
56F807 Technical Data Technical Data, Rev. 15  
40  
Freescale Semiconductor  
Quad Timer Timing  
3.8 Quad Timer Timing  
1, 2  
Table 3-13 Timer Timing  
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6 V, TA = –40° to +85°C, CL 50pF, fOP = 80MHz  
Characteristic  
Timer input period  
Symbol  
PIN  
Min  
4T + 6  
2T + 3  
2T  
Max  
Unit  
ns  
Timer input high/low period  
Timer output period  
PINHL  
POUT  
ns  
ns  
Timer output high/low period  
POUTHL  
1T  
ns  
1. In the formulas listed, T = the clock cycle. For 80MHz operation, T = 12.5ns.  
2. Parameters listed are guaranteed by design.  
Timer Inputs  
PINHL  
PINHL  
PIN  
Timer Outputs  
POUTHL  
POUTHL  
POUT  
Figure 3-23 Timer Timing  
56F807 Technical Data Technical Data, Rev. 15  
Freescale Semiconductor  
41  
3.9 Quadrature Decoder Timing  
1, 2  
Table 3-14 Quadrature Decoder Timing  
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6 V, TA = –40° to +85°C, CL 50pF, fOP = 80MHz  
Characteristic  
Quadrature input period  
Symbol  
PIN  
Min  
Max  
Unit  
ns  
8T + 12  
4T + 6  
2T + 3  
Quadrature input high/low period  
Quadrature phase period  
PHL  
ns  
PPH  
ns  
1. In the formulas listed, T = the clock cycle. For 80MHz operation, T=12.5ns. VSS = 0V, VDD = 3.0–3.6V,  
TA = –40° to +85°C, CL 50pF.  
2. Parameters listed are guaranteed by design.  
PPH PPH PPH PPH  
Phase A  
(Input)  
PHL  
PIN  
PHL  
Phase B  
PHL  
(Input)  
PIN  
PHL  
Figure 3-24 Quadrature Decoder Timing  
56F807 Technical Data Technical Data, Rev. 15  
42  
Freescale Semiconductor  
Serial Communication Interface (SCI) Timing  
3.10 Serial Communication Interface (SCI) Timing  
4
Table 3-15 SCI Timing  
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6 V, TA = –40° to +85°C, CL 50pF, fOP = 80MHz  
Characteristic  
Symbol  
Min  
Max  
Unit  
Baud Rate1  
BR  
(fMAX*2.5)/(80)  
Mbps  
RXD2 Pulse Width  
TXD3 Pulse Width  
RXDPW  
TXDPW  
0.965/BR  
1.04/BR  
1.04/BR  
ns  
ns  
0.965/BR  
1. fMAX is the frequency of operation of the system clock in MHz.  
2. The RXD pin in SCI0 is named RXD0 and the RXD pin in SCI1 is named RXD1.  
3. The TXD pin in SCI0 is named TXD0 and the TXD pin in SCI1 is named TXD1.  
4. Parameters listed are guaranteed by design.  
RXD  
SCI receive  
data pin  
RXDPW  
(Input)  
Figure 3-25 RXD Pulse Width  
TXD  
SCI receive  
data pin  
TXDPW  
(Input)  
Figure 3-26 TXD Pulse Width  
56F807 Technical Data Technical Data, Rev. 15  
Freescale Semiconductor  
43  
3.11 Analog-to-Digital Converter (ADC) Characteristics  
Table 3-16 ADC Characteristics  
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6 V, VREF = VDD-0.3V, ADCDIV = 4, 9, or 14, (for optimal performance),  
ADC clock = 4MHz, 3.0–3.6 V, TA = –40° to +85°C, CL 50pF, fOP = 80MHz  
Characteristic  
ADC input voltages  
Symbol  
Min  
Typ  
Max  
Unit  
2
01  
12  
VREF  
VADCIN  
V
Resolution  
RES  
INL  
12  
Bits  
Integral Non-Linearity3  
Differential Non-Linearity  
LSB4  
LSB4  
+/- 2.5  
+/- 0.9  
+/- 4  
+/- 1  
DNL  
Monotonicity  
GUARANTEED  
ADC internal clock5  
Conversion range  
fADIC  
RAD  
tADC  
0.5  
VSSA  
5
MHz  
V
6
VDDA  
tAIC cycles6  
tAIC cycles6  
Conversion time  
Sample time  
tADS  
1
pF6  
Input capacitance  
CADI  
EGAIN  
THD  
0.93  
60  
5
1.00  
64  
1.08  
Gain Error (transfer gain)5  
Total Harmonic Distortion5  
Offset Voltage5  
VOFFSET  
SINAD  
ENOB  
SFDR  
-90  
55  
-25  
60  
+10  
mV  
Signal-to-Noise plus Distortion5  
Effective Number of Bits5  
9
10  
bit  
Spurious Free Dynamic Range5  
Bandwidth  
65  
70  
dB  
BW  
100  
50  
KHz  
mA  
ADC Quiescent Current (each dual ADC)  
IADC  
VREF Quiescent Current (each dual ADC)  
IVREF  
12  
16.5  
mA  
1. For optimum ADC performance, keep the minimum VADCIN value > 25mV. Inputs less than 25mV may convert to a digital  
output code of 0.  
2. VREF must be equal to or less than VDDA and must be greater than 2.7V. For optimal ADC performance, set VREF to  
V
DDA-0.3V.  
3. Measured in 10-90% range.  
4. LSB = Least Significant Bit.  
5. Guaranteed by characterization.  
6. tAIC = 1/fADIC  
56F807 Technical Data Technical Data, Rev. 15  
44  
Freescale Semiconductor  
Controller Area Network (CAN) Timing  
.
ADC analog input  
3
1
2
4
1. Parasitic capacitance due to package, pin to pin, and pin to package base coupling. (1.8pf)  
2. Parasitic capacitance due to the chip bond pad, ESD protection devices and signal routing. (2.04pf)  
3. Equivalent resistance for the ESD isolation resistor and the channel select mux. (500 ohms)  
4. Sampling capacitor at the sample and hold circuit. Capacitor 4 is normally disconnected from the input and is only connected to it at  
sampling time. (1pf)  
Figure 3-27 Equivalent Analog Input Circuit  
3.12 Controller Area Network (CAN) Timing  
2
Table 3-17 CAN Timing  
DD  
Operating Conditions: V = V  
= 0 V, V = V  
= 3.0–3.6 V, T = –40° to +85°C, C < 50pF, MSCAN Clock = 30MHz  
SS  
SSA  
DDA A L  
Characteristic  
Symbol  
BRCAN  
Min  
5
Max  
Unit  
Baud Rate  
Bus Wakeup detection 1  
1
Mbps  
T WAKEUP  
μs  
1. If Wakeup glitch filter is enabled during the design initialization and also CAN is put into SLEEP mode then, any bus event  
(on MSCAN_RX pin) whose duration is less than 5 microseconds is filtered away. However, a valid CAN bus wakeup detection  
takes place for a wakeup pulse equal to or greater than 5 microseconds. The number 5 microseconds originates from the fact  
that the CAN wakeup message consists of 5 dominant bits at the highest possible baud rate of 1Mbps.  
2. Parameters listed are guaranteed by design  
MSCAN_RX  
CAN receive  
data pin  
T WAKEUP  
(Input)  
Figure 3-28 Bus Wakeup Detection  
56F807 Technical Data Technical Data, Rev. 15  
Freescale Semiconductor  
45  
3.13 JTAG Timing  
1, 3  
Table 3-18 JTAG Timing  
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6 V, TA = –40° to +85°C, CL 50pF, fOP = 80MHz  
Characteristic  
TCK frequency of operation2  
Symbol  
Min  
Max  
Unit  
fOP  
DC  
10  
MHz  
TCK cycle time  
tCY  
tPW  
tDS  
100  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCK clock pulse width  
TMS, TDI data set-up time  
TMS, TDI data hold time  
TCK low to TDO data valid  
TCK low to TDO tri-state  
TRST assertion time  
DE assertion time  
0.4  
1.2  
tDH  
tDV  
26.6  
23.5  
tTS  
tTRST  
tDE  
50  
4T  
1. Timing is both wait state and frequency dependent. For the values listed, T = clock cycle. For 80MHz operation,  
T = 12.5ns.  
2. TCK frequency of operation must be less than 1/8 the processor rate.  
3. Parameters listed are guaranteed by design.  
tCY  
tPW  
tPW  
VIH  
VM  
VM  
TCK  
(Input)  
VIL  
VM = VIL + (VIH – VIL)/2  
Figure 3-29 Test Clock Input Timing Diagram  
56F807 Technical Data Technical Data, Rev. 15  
46  
Freescale Semiconductor  
JTAG Timing  
TCK  
(Input)  
tDS  
tDH  
TDI  
TMS  
Input Data Valid  
(Input)  
tDV  
TDO  
(Output)  
Output Data Valid  
tTS  
TDO  
(Output)  
tDV  
TDO  
(Output)  
Output Data Valid  
Figure 3-30 Test Access Port Timing Diagram  
TRST  
(Input)  
tTRST  
Figure 3-31 TRST Timing Diagram  
DE  
tDE  
Figure 3-32 OnCE—Debug Event  
56F807 Technical Data Technical Data, Rev. 15  
Freescale Semiconductor  
47  
Part 4 Packaging  
4.1 Package and Pin-Out Information 56F807  
This section contains package and pin-out information for the 56F807. This device comes in two case  
types: low-profile quad flat pack (LQFP) or mold array process ball grid assembly (MAPBGA).  
Figure 4-1 shows the package outline for the LQFP case, Figure 4-2 shows the mechanical parameters  
for the LQFP case, and Table 4-1 lists the pinout for the LQFP case. Figure 4-3 shows the mechanical  
parameters for the MAPBGA case, and Table 4-2 lists the pinout for the MAPBGA package.  
Orientation Mark  
A0  
ANB7  
A1  
A2  
A3  
A4  
A5  
ANB6  
ANB5  
ANB4  
ANB3  
121  
Pin 1  
ANB2  
A6  
A7  
ANB1  
ANB0  
V
V
DD  
A8  
SSA  
V
V
DDA  
A9  
REF2  
A10  
ANA7  
A11  
A12  
ANA6  
ANA5  
A13  
A14  
ANA4  
ANA3  
A15  
ANA2  
ANA1  
ANA0  
V
SS  
PS  
DS  
WR  
RD  
D0  
V
SSA  
V
V
DDA  
REF  
RESET  
RSTO  
D1  
V
D2  
D3  
DD  
V
V
SS  
DD  
D4  
D5  
EXTAL  
XTAL  
D6  
D7  
V
V
SS  
D8  
SS  
D9  
V
V
V
DD  
D10  
DDA  
V
DD  
SSA  
D11  
D12  
D13  
EXTBOOT  
FAULTA3  
FAULTA2  
D14  
D15  
81  
FAULTA1  
FAULTA0  
PWMA5  
41  
GPIOB0  
Figure 4-1 Top View, 56F807 160-pin LQFP Package  
56F807 Technical Data Technical Data, Rev. 15  
48  
Freescale Semiconductor  
Package and Pin-Out Information 56F807  
160X  
0.20 C A-B D  
D
b
GG  
D
2
6
D
(b)  
SECTION G-G  
NOTES:  
1. DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND TOLERANCES  
PER ASME Y14.5M, 1994.  
3. DATUMS A, B, AND D TO BE DETERMINED  
WHERETHE LEADSEXITTHEPLASTICBODY  
AT DATUM PLANE H.  
4. DIMENSIONS D1 AND E1 DO NOT INCLUDE  
MOLD PROTRUSION. ALLOWABLE  
PROTRUSION IS 0.25mm PER SIDE.  
DIMENSIONS D1 AND E1 ARE MAXIMUM  
PLASTIC BODY SIZE DIMENSIONS  
INCLUDING MOLD MISMATCH.  
D1  
2
5. DIMENSION b DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL NOT CAUSE THE LEAD  
WIDTH TO EXCEED THE MAXIMUM b  
DIMENSION BY MORE THAN 0.08mm.  
DAMBAR CAN NOT BE LOCATED ON THE  
LOWER RADIUS OR THE FOOT. MINIMUM  
SPACE BETWEEN A PROTRUSION AND AN  
ADJACENT LEAD IS 0.07mm.  
D1  
4X  
0.20 H A-B D  
DETAIL F  
6. EXACT SHAPE OF CORNERS MAY VARY.  
0.08 C  
156X e  
C
MILLIMETERS  
DIM MIN MAX  
4X e/2  
SEATING  
PLANE  
160X e  
A
A1  
A2  
b
b1  
c
c1  
D
D1  
e
---  
0.05  
1.35  
0.17  
0.17  
0.09  
0.09  
1.60  
0.15  
1.45  
0.27  
0.23  
0.20  
0.16  
M
0.08  
C A-B D  
θ2  
θ1  
H
26.00 BSC  
24.00 BSC  
0.50 BSC  
R1  
R2  
E
E1  
L
26.00 BSC  
24.00 BSC  
0.45  
0.75  
L1  
R1  
R2  
S
1.00 REF  
θ3  
0.25  
0.08  
0.08  
0.20  
---  
0.20  
---  
θ
GAGE  
PLANE  
S
L
(L1)  
θ
0
0
11  
11  
7
---  
13  
13  
°
°
°
°
°
θ 1  
θ 2  
θ 3  
°
°
DETAIL F  
CASE 1259-01  
ISSUE O  
Figure 4-2 160-pin LQFP Mechanical Information  
Please see www.freescale.com for the most current case outline.  
56F807 Technical Data Technical Data, Rev. 15  
Freescale Semiconductor  
49  
Table 4-1 56F807 LQFP Package Pin Identification by Pin Number  
Pin No. Signal Name Pin No.  
Signal Name  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
1
2
A0  
A1  
41  
42  
GPIOB1  
GPIOB2  
81  
82  
PWMA5  
121  
122  
DE  
FAULTA0  
VSS  
3
4
5
6
7
A2  
A3  
A4  
A5  
A6  
43  
44  
45  
46  
47  
GPIOB3  
GPIOB4  
GPIOB5  
GPIOB6  
GPIOB7  
83  
84  
85  
86  
87  
FAULTA1  
FAULTA2  
FAULTA3  
EXTBOOT  
VSSA  
123  
124  
125  
126  
127  
ISA0  
ISA1  
ISA2  
TD0  
TD1  
8
9
A7  
VDD  
A8  
48  
49  
50  
51  
VSS  
88  
89  
90  
91  
VDDA  
VDD  
VSS  
128  
129  
130  
131  
TD2  
TD3  
TC0  
TC1  
GPIOD0  
GPIOD1  
GPIOD2  
10  
11  
A9  
VSS  
12  
13  
14  
A10  
A11  
A12  
52  
53  
54  
GPIOD3  
GPIOD4  
GPIOD5  
92  
93  
94  
XTAL  
EXTAL  
VDD  
132  
133  
134  
TRST  
TCS  
TCK  
15  
16  
A13  
A14  
55  
56  
TXD1  
RXD1  
95  
96  
VSS  
VDD  
135  
136  
TMS  
TDI  
17  
18  
A15  
VSS  
57  
58  
PWMB0  
PWMB1  
97  
98  
RSTO  
137  
138  
TDO  
RESET  
VCAPC2  
19  
20  
PS  
DS  
59  
60  
PWMB2  
PWMB3  
99  
VREF  
VDDA  
139  
140  
MSCAN_TX  
VDD  
100  
21  
WR  
61  
PWMB4  
101  
VSSA  
141  
VSS  
22  
23  
RD  
D0  
62  
63  
PWMB5  
VDD  
102  
103  
ANA0  
ANA1  
142  
143  
MSCAN_RX  
SS  
24  
25  
26  
27  
28  
29  
30  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
64  
65  
66  
67  
68  
69  
70  
ISB0  
VCAPC1  
ISB1  
104  
105  
106  
107  
108  
109  
110  
ANA2  
ANA3  
ANA4  
ANA5  
ANA6  
ANA7  
VREF2  
144  
145  
146  
147  
148  
149  
150  
SCLK  
MISO  
MOSI  
ISB2  
PHA0  
VPP2  
IRQA  
PHB0  
INDEX0  
HOME0  
IRQB  
56F807 Technical Data Technical Data, Rev. 15  
50  
Freescale Semiconductor  
Package and Pin-Out Information 56F807  
Table 4-1 56F807 LQFP Package Pin Identification by Pin Number (Continued)  
Pin No. Signal Name Pin No.  
Signal Name  
FAULTB0  
FAULTB1  
FAULTB2  
FAULTB3  
Pin No.  
111  
Signal Name  
VDDA  
Pin No.  
151  
Signal Name  
PHA1  
31  
32  
33  
34  
D8  
D9  
71  
72  
73  
74  
112  
VSSA  
152  
PHB1  
D10  
VDD  
113  
ANB0  
153  
VDD  
114  
ANB1  
154  
INDEX1  
35  
36  
D11  
D12  
75  
76  
PWMA0  
VSS  
115  
116  
ANB2  
ANB3  
155  
156  
HOME1  
VPP  
37  
D13  
77  
PWMA1  
117  
ANB4  
157  
VSS  
38  
39  
40  
D14  
D15  
78  
79  
80  
PWMA2  
PWMA3  
PWMA4  
118  
119  
120  
ANB5  
ANB6  
ANB7  
158  
159  
160  
CLKO  
TXD0  
RXD0  
GPIOB0  
56F807 Technical Data Technical Data, Rev. 15  
Freescale Semiconductor  
51  
D
X
LASER MARK FOR PIN 1  
IDENTIFICATION IN  
THIS AREA  
Y
M
K
NOTES:  
1. DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND  
TOLERANCES PER ASME Y14.5M, 1994.  
3. DIMENSION b IS MEASURED AT THE  
MAXIMUM SOLDER BALL DIAMETER,  
PARALLEL TO DATUM PLANE Z.  
4. DATUM Z (SEATING PLANE) IS DEFINED BY  
THE SPHERICAL CROWNS OF THE SOLDER  
BALLS.  
E
5. PARALLELISM MEASUREMENT SHALL  
EXCLUDE ANY EFFECT OF MARK ON TOP  
SURFACE OF PACKAGE.  
MILLIMETERS  
DIM MIN MAX  
0.20  
A
A1  
A2  
b
1.32  
0.27  
1.18 REF  
1.75  
0.47  
0.35  
0.65  
13X  
e
D
E
e
15.00 BSC  
15.00 BSC  
1.00 BSC  
0.50 BSC  
S
METALIZED MARK FOR  
PIN 1 IDENTIFICATION  
IN THIS AREA  
S
14 13 12 11 10  
9
6
5
4
3
2
1
A
B
C
D
E
F
5
S
0.30 Z  
A2  
13X  
e
A
G
H
J
160X  
A1  
0.15 Z  
4
Z
K
L
M
DETAIL K  
ROTATED 90 CLOCKWISE  
°
N
P
3
160X  
b
0.30 Z X Y  
0.10 Z  
VIEW M-M  
CASE 1268-01  
ISSUE O  
Figure 4-3 160 MAPBGA Mechanical Information  
Please see www.freescale.com for the most current case outline.  
56F807 Technical Data Technical Data, Rev. 15  
52  
Freescale Semiconductor  
Package and Pin-Out Information 56F807  
Table 4-2 160 MAPBGA Package Pin Identification by Pin Number  
Solder  
Ball  
Solder  
Ball  
Solder  
Ball  
Solder  
Ball  
Signal Name  
Signal Name  
Signal Name  
Signal Name  
C3  
B2  
D3  
C2  
B1  
A0  
A1  
A2  
A3  
A4  
N4  
P4  
M4  
L5  
GPIOB5  
GPIOB6  
GPIOB7  
VSS  
K12  
K13  
L14  
K11  
K14  
E10  
D9  
B9  
E9  
A9  
TC1  
TRST  
TCS  
TCK  
TMS  
VSSA  
VDDA  
VDD  
VSS  
N5  
GPIOD0  
VSS  
D2  
C1  
D1  
A5  
A6  
A7  
P5  
K5  
N6  
GPIOD1  
GPIOD2  
GPIOD3  
J13  
J12  
J14  
XTAL  
EXTAL  
VDD  
D8  
B8  
A8  
TDI  
TDO  
VCAPC2  
E3  
E2  
E1  
L6  
K6  
P6  
GPIOD4  
GPIOD5  
TXD1  
J11  
H13  
H12  
E8  
D7  
E7  
MSCAN_TX  
VDD  
VDD  
A8  
VSS  
V
DD  
A9  
RSTO  
VSS  
F3  
F2  
F1  
A10  
A11  
A12  
N7  
L7  
P7  
RXD1  
H14  
H11  
G12  
RESET  
VREF  
VDDA  
D6  
H1  
H2  
MSCAN_RX  
PWMB0  
PWMB1  
D1  
D2  
G3  
A13  
K7  
PWMB2  
G11  
J3  
D3  
VSSA  
G2  
G1  
F4  
A14  
A15  
VSS  
L8  
K8  
P8  
PWMB3  
PWMB4  
PWMB5  
G14  
B13  
A14  
ANA0  
DE  
J1  
J2  
K3  
D4  
D5  
D6  
VSS  
G4  
PS  
L9  
B12  
ISA0  
K1  
D7  
VDD  
H4  
J4  
DS  
WR  
RD  
N8  
ISB0  
A13  
A12  
B11  
ISA1  
ISA2  
TD0  
L1  
K2  
L3  
D8  
D9  
P14  
M13  
PWMA5  
FAULTA0  
K4  
D10  
56F807 Technical Data Technical Data, Rev. 15  
Freescale Semiconductor  
53  
Table 4-2 160 MAPBGA Package Pin Identification by Pin Number (Continued)  
Solder  
Ball  
Solder  
Ball  
Solder  
Ball  
Solder  
Ball  
Signal Name  
Signal Name  
Signal Name  
Signal Name  
P1  
GPIOB1  
L12  
FAULTA1  
A11  
TD1  
M1  
VDD  
N3  
P2  
P3  
N2  
GPIOB2  
GPIOB3  
GPIOB4  
D14  
N14  
L13  
M14  
N11  
FAULTA2  
FAULTA3  
EXTBOOT  
VSS  
D10  
B10  
A10  
D14  
TD2  
TD3  
TC0  
L2  
N1  
M2  
D5  
D11  
D12  
D13  
PHB0  
VSSA  
M3  
L4  
D15  
GPIOB0  
VCAPC1  
ISB1  
P13  
N12  
N13  
M12  
F11  
PWMA1  
PWMA2  
PWMA3  
PWMA4  
ANA1  
D11  
D12  
D13  
C14  
C13  
ANA8  
ANA9  
B6  
A5  
E4  
B5  
A4  
INDEX0  
HOME0  
PHA1  
PHB1  
VDD  
K10  
K9  
ANA10  
ANA11  
ANA12  
P9  
ISB2  
L10  
N9  
VPP2  
IRQA  
G13  
F12  
F14  
E11  
F13  
E12  
E14  
ANA2  
ANA3  
ANA4  
ANA5  
ANA6  
ANA7  
VREF2  
C11  
B14  
C12  
A7  
ANA13  
ANA14  
ANA15  
SS  
D4  
C4  
B4  
A2  
B3  
A1  
A3  
INDEX1  
HOME1  
VPP  
P10  
P11  
N10  
L11  
M11  
IRQB  
FAULTB0  
FAULTB1  
FAULTB2  
FAULTB3  
CLKO  
TXD0  
RXD0  
VSS  
E5  
SCLK  
MISO  
MOSI  
B7  
A6  
P12  
PWMA0  
E13  
E6  
PHA0  
H3  
D0  
VDDA  
56F807 Technical Data Technical Data, Rev. 15  
54  
Freescale Semiconductor  
Thermal Design Considerations  
Part 5 Design Considerations  
5.1 Thermal Design Considerations  
An estimation of the chip junction temperature, T , in °C can be obtained from the equation:  
J
Equation 1: TJ = TA + (PD × RθJA  
)
Where:  
TA = ambient temperature °C  
RθJA = package junction-to-ambient thermal resistance °C/W  
PD = power dissipation in package  
Historically, thermal resistance has been expressed as the sum of a junction-to-case thermal resistance and  
a case-to-ambient thermal resistance:  
Equation 2: RθJA = RθJC + RθCA  
Where:  
RθJA = package junction-to-ambient thermal resistance °C/W  
RθJC = package junction-to-case thermal resistance °C/W  
RθCA = package case-to-ambient thermal resistance °C/W  
R
is device-related and cannot be influenced by the user. The user controls the thermal environment to  
θJC  
change the case-to-ambient thermal resistance, R  
. For example, the user can change the air flow around  
θCA  
the device, add a heat sink, change the mounting arrangement on the Printed Circuit Board (PCB), or  
otherwise change the thermal dissipation capability of the area surrounding the device on the PCB. This  
model is most useful for ceramic packages with heat sinks; some 90% of the heat flow is dissipated through  
the case to the heat sink and out to the ambient environment. For ceramic packages, in situations where  
the heat flow is split between a path to the case and an alternate path through the PCB, analysis of the  
device thermal performance may need the additional modeling capability of a system level thermal  
simulation tool.  
The thermal performance of plastic packages is more dependent on the temperature of the PCB to which  
the package is mounted. Again, if the estimations obtained from R  
the thermal performance is adequate, a system level model may be appropriate.  
do not satisfactorily answer whether  
θJA  
Definitions:  
A complicating factor is the existence of three common definitions for determining the junction-to-case  
thermal resistance in plastic packages:  
Measure the thermal resistance from the junction to the outside surface of the package (case) closest to the  
chip mounting area when that surface has a proper heat sink. This is done to minimize temperature variation  
across the surface.  
56F807 Technical Data Technical Data, Rev. 15  
Freescale Semiconductor  
55  
Measure the thermal resistance from the junction to where the leads are attached to the case. This definition  
is approximately equal to a junction to board thermal resistance.  
Use the value obtained by the equation (TJ – TT)/PD where TT is the temperature of the package case  
determined by a thermocouple.  
The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T  
thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so  
that the thermocouple junction rests on the package. A small amount of epoxy is placed over the  
thermocouple junction and over about 1mm of wire extending from the junction. The thermocouple wire  
is placed flat against the package case to avoid measurement errors caused by cooling effects of the  
thermocouple wire.  
When heat sink is used, the junction temperature is determined from a thermocouple inserted at the  
interface between the case of the package and the interface material. A clearance slot or hole is normally  
required in the heat sink. Minimizing the size of the clearance is important to minimize the change in  
thermal performance caused by removing part of the thermal interface to the heat sink. Because of the  
experimental difficulties with this technique, many engineers measure the heat sink temperature and then  
back-calculate the case temperature using a separate measurement of the thermal resistance of the  
interface. From this case temperature, the junction temperature is determined from the junction-to-case  
thermal resistance.  
5.2 Electrical Design Considerations  
CAUTION  
This device contains protective circuitry to guard  
against damage due to high static voltage or electrical  
fields. However, normal precautions are advised to  
avoid application of any voltages higher than maximum  
rated voltages to this high-impedance circuit. Reliability  
of operation is enhanced if unused inputs are tied to an  
appropriate voltage level.  
Use the following list of considerations to assure correct operation:  
Provide a low-impedance path from the board power supply to each VDD pin on the controller, and from the  
board ground to each VSS pin.  
The minimum bypass requirement is to place 0.1 μF capacitors positioned as close as possible to the  
package supply pins. The recommended bypass configuration is to place one bypass capacitor on each of  
the VDD/VSS pairs, including VDDA/VSSA. Ceramic and tantalum capacitors tend to provide better  
performance tolerances.  
56F807 Technical Data Technical Data, Rev. 15  
56  
Freescale Semiconductor  
Electrical Design Considerations  
Ensure that capacitor leads and associated printed circuit traces that connect to the chip VDD and VSS pins  
are less than 0.5 inch per capacitor lead.  
Bypass the VDD and VSS layers of the PCB with approximately 100 μF, preferably with a high-grade  
capacitor such as a tantalum capacitor.  
Because the controller’s output signals have fast rise and fall times, PCB trace lengths should be minimal.  
Consider all device loads as well as parasitic capacitance due to PCB traces when calculating capacitance.  
This is especially critical in systems with higher capacitive loads that could create higher transient currents  
in the VDD and VSS circuits.  
Take special care to minimize noise levels on the VREF, VDDA and VSSA pins.  
Designs that utilize the TRST pin for JTAG port or OnCE module functionality (such as development or  
debugging systems) should allow a means to assert TRST whenever RESET is asserted, as well as a means  
to assert TRST independently of RESET. TRST must be asserted at power up for proper operation. Designs  
that do not require debugging functionality, such as consumer products, TRST should be tied low.  
Because the Flash memory is programmed through the JTAG/OnCE port, designers should provide an  
interface to this port to allow in-circuit Flash programming.  
56F807 Technical Data Technical Data, Rev. 15  
Freescale Semiconductor  
57  
Part 6 Ordering Information  
Table 6-1 lists the pertinent information needed to place an order. Consult a Freescale Semiconductor  
sales office or authorized distributor to determine availability and to order parts.  
Table 6-1 56F807 Ordering Information  
Ambient  
Frequency  
(MHz)  
Supply  
Voltage  
Pin  
Count  
Part  
Package Type  
Order Number  
56F807  
56F807  
3.0–3.6 V  
3.0–3.6 V  
Low-Profile Quad Flat Pack (LQFP)  
160  
160  
80  
80  
DSP56F807PY80  
DSP56F807VF80  
Mold Array Process Ball Grid Array  
(MAPBGA)  
56F807  
56F807  
3.0–3.6 V  
3.0–3.6 V  
Low-Profile Quad Flat Pack (LQFP)  
160  
160  
80  
80  
DSP56F807PY80E*  
DSP56F807VF80E*  
Mold Array Process Ball Grid Array  
(MAPBGA)  
*This package is RoHS compliant.  
56F807 Technical Data Technical Data, Rev. 15  
58  
Freescale Semiconductor  
Electrical Design Considerations  
56F807 Technical Data Technical Data, Rev. 15  
Freescale Semiconductor  
59  
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
RoHS-compliant and/or Pb-free versions of Freescale products have the  
functionality and electrical characteristics of their non-RoHS-compliant  
and/or non-Pb-free counterparts. For further information, see  
http://www.freescale.com or contact your Freescale sales representative.  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064, Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Information in this document is provided solely to enable system and  
software implementers to use Freescale Semiconductor products. There are  
no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits or integrated circuits based on the  
information in this document.  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
Freescale Semiconductor reserves the right to make changes without further  
notice to any products herein. Freescale Semiconductor makes no warranty,  
representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does Freescale Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or  
incidental damages. “Typical” parameters that may be provided in Freescale  
Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer  
application by customer’s technical experts. Freescale Semiconductor does  
not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized  
for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other  
application in which the failure of the Freescale Semiconductor product could  
create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold Freescale  
Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized  
use, even if such claim alleges that Freescale Semiconductor was negligent  
regarding the design or manufacture of the part.  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor,  
Inc. All other product or service names are the property of their respective owners.  
This product incorporates SuperFlash® technology licensed from SST.  
© Freescale Semiconductor, Inc. 2005. All rights reserved.  
DSP56F807  
Rev. 15  
01/2007