5秒后页面跳转
21143 PDF预览

21143

更新时间: 2024-01-11 19:53:16
品牌 Logo 应用领域
英特尔 - INTEL 控制器PC局域网以太网局域网(LAN)标准
页数 文件大小 规格书
52页 258K
描述
PCI/CardBus 10/100 Ethernet LAN Controller

21143 技术参数

是否Rohs认证: 不符合生命周期:Obsolete
零件包装代码:QFP包装说明:LFQFP, QFP144,.87SQ,20
针数:144Reach Compliance Code:unknown
HTS代码:8542.31.00.01风险等级:5.73
Is Samacsys:N地址总线宽度:32
边界扫描:YES总线兼容性:PCI; CARDBUS
最大时钟频率:33.33 MHz数据编码/解码方法:BIPH-LEVEL(MANCHESTER)
最大数据传输速率:12.5 MBps外部数据总线宽度:32
JESD-30 代码:S-PQFP-G144JESD-609代码:e0
长度:20 mm低功率模式:YES
串行 I/O 数:2端子数量:144
最高工作温度:70 °C最低工作温度:
封装主体材料:PLASTIC/EPOXY封装代码:LFQFP
封装等效代码:QFP144,.87SQ,20封装形状:SQUARE
封装形式:FLATPACK, LOW PROFILE, FINE PITCH峰值回流温度(摄氏度):NOT SPECIFIED
电源:3.3,3.3/5 V认证状态:Not Qualified
座面最大高度:1.6 mm子类别:Serial IO/Communication Controllers
最大压摆率:230 mA最大供电电压:3.6 V
最小供电电压:3 V标称供电电压:3.3 V
表面贴装:YES技术:CMOS
温度等级:COMMERCIAL端子面层:Tin/Lead (Sn/Pb)
端子形式:GULL WING端子节距:0.5 mm
端子位置:QUAD处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:20 mmuPs/uCs/外围集成电路类型:SERIAL IO/COMMUNICATION CONTROLLER, LAN
Base Number Matches:1

21143 数据手册

 浏览型号21143的Datasheet PDF文件第1页浏览型号21143的Datasheet PDF文件第2页浏览型号21143的Datasheet PDF文件第3页浏览型号21143的Datasheet PDF文件第5页浏览型号21143的Datasheet PDF文件第6页浏览型号21143的Datasheet PDF文件第7页 
21143  
1.0  
21143 Overview  
The Intel 21143 PCI/CardBus* 10/100-Mb/s Ethernet LAN Controller (21143) supports the  
peripheral component interconnect (PCI) bus or CardBus. It provides a direct interface connection  
to the PCI bus and adapts easily to the CardBus and most other standard buses. The 21143 software  
interface and data structures are optimized to minimize the host CPU load and to allow for  
maximum flexibility in the buffer descriptor management. The 21143 contains large onchip FIFOs,  
so no additional onboard memory is required. The 21143 also provides an upgradable boot ROM  
interface.  
In addition to the features listed on the title pages, the following features are also supported by the  
21143:  
PCI and CardBus Features:  
Supports PCI and CardBus interfaces.  
Supports PCI/CardBus clock control through clkrun.  
Supports CardBus cstschg pin and Status Changed registers.  
Supports automatic loading of subvendor ID and CardBus card information structure (CIS)  
pointer from serial ROM to configuration registers.  
Supports storage of CardBus card information structure (CIS) in the serial ROM or the  
expansion ROM.  
Supports the advanced PCI/CardBus read multiple, read line, and write and invalidate  
commands.  
Supports an unlimited PCI/CardBus burst.  
Host Interface Features:  
Includes a powerful onchip direct memory access (DMA) with programmable burst size,  
providing low CPU utilization.  
Supports early interrupt on transmit and receive.  
Supports interrupt mitigation on transmit and receive.  
Supports big or little endian byte ordering for buffers and descriptors.  
Implements unique, patented intelligent arbitration between DMA channels to minimize  
underflow and overflow.  
Contains large independent receive and transmit FIFOs.  
Network Side Features:  
Supports three network ports: 10BASE-T (10 Mb/s), AUI (10 Mb/s), and  
MII/SYM (10/100 Mb/s).  
Contains a variety of flexible address filtering modes.  
Implements signal-detect filtering to avoid false detection of link with 100BASE-TX symbol  
interfaces.  
Enables automatic detection and correction of 10BASE-T receive polarity.  
Supports autodetection between 10BASE-T, AUI, and MII/SYM ports.  
Offers a unique, patented solution to Ethernet capture-effect problem.  
Preliminary Datasheet  
1
21143  
Supports full-duplex operation on both MII/SYM and 10BASE-T ports.  
Provides internal and external loopback capability on all network ports.  
Supports IEEE 802.3 and ANSI 8802-3 Ethernet standards.  
Other Features:  
Provides MicroWire* interface for serial ROM (1K and 4K EEPROM).  
Provides LED indications for various network activity.  
Implements test-access port (JTAG-compatible) with boundary-scan pins.  
Contains a 4-bit, general-purpose programmable register and corresponding  
I/O pins with the ability to generate interrupts from two general-purpose pins.  
1.1  
General Description  
The 21143 is an Ethernet LAN controller for both 100-Mb/s and 10-Mb/s data rates, which  
provides a direct interface to the peripheral component interconnect (PCI) local bus or the  
CardBus. The 21143 interfaces to the host processor by using onchip command and status registers  
(CSRs) and a shared host memory area, set up mainly during initialization. This minimizes  
processor involvement in the 21143 operation during normal reception and transmission.  
The 21143 is optimized for low power PCI/CardBus based systems and supports two types of  
power-management mechanisms. The main mechanism is based upon the OnNow architecture,  
which is required for PC 97 and PC 98. The alternative mechanism is based upon the older remote  
wake-up-LAN mechanism.  
Large FIFOs allow the 21143 to efficiently operate in systems with longer latency periods. Bus  
traffic is also minimized by filtering out received runt frames and by automatically retransmitting  
collided frames without a repeated fetch from the host memory.  
The 21143 provides three network ports: a 10BASE-T 10-Mb/s port, an attachment unit interface  
(AUI) 10-Mb/s port, and a media-independent/symbol interface (MII/SYM) 10/100-Mb/s port. The  
10BASE-T port provides a direct Ethernet connection to the twisted-pair (TP) interface. The AUI  
port provides a direct Ethernet connection to the AUI.  
The MII/SYM port supports two operational modes:  
MII mode—A full implementation of the MII standard  
SYM mode—Symbol interface to an external 100-Mb/s front-end decoder (ENDEC). In this  
mode the 21143 uses an onchip physical coding sublayer (PCS) and a scrambler/descrambler  
circuit to enable a low-cost 100BASE-T implementation.  
The 21143 is capable of functioning in a full-duplex environment for the MII/SYM and 10BASE-T  
ports. The 21143 provides an upgradable boot ROM interface.  
2
Preliminary Datasheet  
21143  
1.2  
Microarchitecture  
The following list describes the 21143 hardware components, and Figure 1 shows a block diagram  
of the 21143:  
PCI/CardBus interface—Includes all interface functions to the PCI and CardBus bus; handles  
all interconnect control signals; and executes DMA and I/O transactions  
Boot ROM port—Provides an interface to perform read and write operations to the boot ROM;  
supports accesses to bytes or longwords (32-bit); and provides the ability to connect an  
external 8-bit register to the boot ROM port  
Serial ROM port—Provides a direct interface to a MicroWire ROM for storage of the Ethernet  
address and system parameters  
General-purpose register—Enables software use for input or output functions and LEDs  
DMA—Contains independent receive and transmit controllers; handles data transfers between  
CPU memory and onchip memory  
FIFOs—Contains independent FIFOs for receive and transmit; supports automatic packet  
deletion on receive (runt packets or after a collision) and packet retransmission after a collision  
on transmit  
TxM—Handles all CSMA/CD1 MAC2 transmit operations, and transfers data from transmit  
FIFO to the ENDEC for transmission  
RxM—Handles all CSMA/CD MAC receive operations, and transfers the network data from  
the ENDEC to the receive FIFO  
SIA interface—Performs 10-Mb/s physical layer network operations; implements the AUI and  
10BASE-T functions, including the Manchester encoder and decoder functions  
NWAY—Implements the IEEE 802.3 Auto-Negotiation algorithm  
Physical coding sublayer—Implements the encoding and decoding sublayer of the  
100BASE-TX (CAT5) specification, including the squelch feature  
Scrambler/descrambler—Implements the twisted-pair physical layer medium dependent  
(TP-PMD) scrambler/descrambler scheme for 100BASE-TX  
Three network interfaces—An AUI interface, a 10BASE-T interface, and an MII/SYM  
interface provide a full MII signal interface and direct interface to the 100-Mb/s ENDEC for  
CAT5  
Wake-up-controller—Enables power-management control compliant with the ACPI and  
remote power-up capabilities using the remote wake-up-LAN mechanism  
1. Carrier-sense multiple access with collision detection.  
2. Media access control.  
Preliminary Datasheet  
3
21143  
Board  
Control  
and LEDs  
Boot ROM/  
External  
Register  
Serial  
ROM  
PCI/CardBus  
General-  
Purpose  
Register  
Boot  
ROM  
Port  
Serial  
ROM  
Port  
PCI/CardBus  
Interface  
32  
32  
4
32  
32  
DMA  
32  
Rx  
FIFO  
Tx  
FIFO  
16  
16  
Wake-Up  
Controller  
RxM  
TxM  
1
4
4
1
Physical Coding  
Sublayer (PCS)  
SIA Interface  
NWAY  
4
4
Scrambler/  
Descrambler  
AUI  
Interface  
10BASE-T  
Interface  
MII/SYM Interface  
10 Mb/s  
10/100 Mb/s  
10 Mb/s  
FM-06117.AI4  
Figure 1. 21143 Block Diagram  
4
Preliminary Datasheet  
21143  
2.0  
Pinout  
The 21143 is offered in two package styles: a 144-pin low-profile quad flat pack (LQFP) and a  
144-pin metric quad flat pack (MQFP). The tables in this section provide a description of the pins  
and their respective signal definitions.  
Table 1 lists the tables in this section. Figure 2 shows the 21143 pinout for both the LQFP and  
MQFP package types  
Table 1. Index to Pinout Tables  
For this information...  
Refer to...  
Logic signals  
Power pins  
Table 2  
Table 3  
Table 4  
Table 5  
Table 6  
Table 7  
Table 8  
Table 9  
Functional signals description  
Input pins  
Output pins  
Input/output pins  
Open drain pins  
Signal functions  
Preliminary Datasheet  
5
 
21143  
1
4
4
1
4
3
1
4
2
1
4
1
1
4
0
1
3
9
1
3
8
1
3
7
1
3
6
1
3
5
1
3
4
1
3
3
1
3
2
1
3
1
1
3
0
1
2
9
1
2
8
1
2
7
1
2
6
1
2
5
1
2
4
1
2
3
1
2
2
1
2
1
1
2
0
1
1
9
1
1
8
1
1
7
1
1
6
1
1
5
1
1
4
1
1
3
1
1
2
1
1
1
1
1
0
1
0
9
vdd  
vdd  
vss  
1
2
3
4
5
6
7
8
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
iref  
vdd  
xtal1  
tp_td--  
tp_td-  
tp_td+  
tp_td++  
vdd  
tp_rd+  
tp_rd-  
tck  
tms  
tdi  
tdo  
int_l  
xtal2  
vss  
gep<3>/link  
gep<2>/rcv_match/wake  
gep<1>/activ  
gep<0>/aui_bnc  
br_ad<7>  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
br_ad<6>  
br_ad<5>  
br_ad<4>  
vdd  
vss  
rst_l  
vss  
vdd  
br_ad<3>  
br_ad<2>  
br_ad<1>  
br_ad<0>  
21143  
pci_clk  
vdd_clamp  
gnt_l  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
br_a<1>  
br_a<0>/cb_pads_l  
br_ce_l  
clkrun_l  
ad<0>  
ad<1>  
req_l  
ad<31>  
ad<30>  
ad<29>  
vdd  
ad<28>  
ad<27>  
ad<26>  
vss  
ad<25>  
ad<24>  
c_be_l<3>  
idsel  
vss  
ad<2>  
ad<3>  
ad<4>  
vdd  
ad<5>  
ad<6>  
ad<7>  
c_be_l<0>  
vss  
vdd  
74  
73  
vss  
vdd  
3
7
3
8
3
9
4
0
4
1
4
2
4
3
4
4
4
5
4
6
4
7
4
8
4
9
5
0
5
1
5
2
5
3
5
4
5
5
5
6
5 5 5 6 6 6 6 7 7 7  
6 6 6 6 6 6  
1 2 3 4 5 6  
7 8 9 0 7 8 9 0 1 2  
A5992-01  
Figure 2. 21143 Pinout Diagram (Top View)  
6
Preliminary Datasheet  
21143  
2.1  
Signal Reference Tables  
Table 2 provides an alphabetical list of the 21143 logic names and their pin numbers. Table 3  
provides a list of the 21143 power pin numbers.  
Preliminary Datasheet  
7
21143  
.
Table 2. Logic Signals (Sheet 1 of 2)  
Pin  
Number  
Pin  
Number  
Pin  
Number  
Signal  
ad<0>  
Signal  
Signal  
85  
84  
82  
81  
aui_rd–  
140  
139  
143  
142  
mii_mdc  
mii_mdio  
134  
135  
128  
127  
ad<1>  
ad<2>  
ad<3>  
aui_rd+  
aui_td–  
aui_td+  
mii/sym_rclk  
mii_rx_err/sel10_100  
br_a<0>/  
cb_pads_l  
ad<4>  
80  
88  
mii/sym_rxd<0>  
130  
ad<5>  
78  
77  
76  
70  
69  
68  
66  
65  
64  
62  
61  
48  
47  
45  
44  
43  
41  
br_a<1>  
89  
90  
91  
92  
93  
96  
97  
98  
99  
87  
75  
60  
49  
33  
86  
55  
50  
mii/sym_rxd<1>  
mii/sym_rxd<2>  
mii/sym_rxd<3>  
mii/sym_tclk  
mii/sym_txd<0>  
mii/sym_txd<1>  
mii/sym_txd<2>  
mii/sym_txd<3>  
mii_txen/sym_txd<4>  
par  
131  
132  
133  
124  
122  
121  
120  
119  
123  
59  
ad<6>  
br_ad<0>  
br_ad<1>  
br_ad<2>  
br_ad<3>  
br_ad<4>  
br_ad<5>  
br_ad<6>  
br_ad<7>  
br_ce_l  
ad<7>  
ad<8>  
ad<9>  
ad<10>  
ad<11>  
ad<12>  
ad<13>  
ad<14>  
ad<15>  
ad<16>  
ad<17>  
ad<18>  
ad<19>  
ad<20>  
ad<21>  
c_be_l<0>  
c_be_l<1>  
c_be_l<2>  
c_be_l<3>  
clkrun_l  
pci_clk  
19  
perr_l  
57  
req_l  
22  
rst_l  
16  
serr_l  
58  
devsel_l  
sr_ck  
114  
115  
frame_l  
sr_cs  
gep<0>/  
aui_bnc  
ad<22>  
ad<23>  
40  
39  
100  
101  
sr_di  
113  
112  
gep<1>/activ  
sr_do  
gep<2>/  
rcv_match/  
wake  
ad<24>  
32  
102  
stop_l  
56  
ad<25>  
ad<26>  
ad<27>  
ad<28>  
ad<29>  
ad<30>  
31  
29  
28  
27  
25  
24  
gep<3>/link  
gnt_l  
103  
21  
tck  
11  
13  
14  
12  
10  
9
tdi  
idsel  
34  
tdo  
int_l  
15  
tms  
irdy_l  
iref  
51  
tp_rd–  
tp_rd+  
108  
mii_clsn/  
sym_rxd<4>  
ad<31>  
23  
118  
tp_td–  
5
aui_cd–  
aui_cd+  
138  
137  
mii_crs/sd  
mii_dv  
117  
129  
tp_td– –  
tp_td+  
4
6
8
Preliminary Datasheet  
21143  
Table 2. Logic Signals (Sheet 2 of 2)  
Pin  
Number  
Pin  
Number  
Pin  
Number  
Signal  
Signal  
Signal  
tp_td+ +  
xtal1  
7
trdy_l  
52  
vcap_h  
110  
106  
xtal2  
105  
Table 3. Power Pins  
Signal  
Pin Number  
Signal  
Pin Number  
1, 2, 8, 18, 26, 36,  
37, 46, 54, 67, 72,  
73, 79, 95, 107,  
125, 136, 141  
3, 17, 30, 35, 38,  
42, 53, 63, 71, 74,  
83, 94, 104, 116,  
126, 144  
vdd (3.3 V)  
vss (GND)  
vddac (3.3 V)  
109, 111  
20  
vdd_clamp (5 V or 3.3 V)  
2.2  
Signal Reference Tables  
The functional grouping of each pin is listed in Section 2.4.  
The following terms describe the 21143 pinout:  
Address phase  
Address and appropriate bus commands are driven during this cycle.  
Data phase  
Data and the appropriate byte enable codes are driven during this cycle.  
_l  
All pin names with the _l suffix are asserted low.  
The following pins in Table 4 have an internal pull-up:  
tms  
tdi  
br_ce_l  
sr_do  
mii/sym_tclk  
Pin sr_cs has an internal pull-down.  
Table 4 uses the following abbreviations:  
I = Input  
O = Output  
I/O = Input/output  
O/D = Open drain  
P = Power  
Preliminary Datasheet  
9
21143  
Table 4 provides a functional description of each of the 21143 signals. These signals are listed  
alphabetically.  
Table 4. Functional Description of 21143 Signals (Sheet 1 of 6)  
Signal  
Type  
Pin Number  
Description  
23, 24, 25, 27, 32-bit PCI address and data lines. Address and data bits are  
28, 29, 31, 32, multiplexed on the same pins. During the first clock cycle of a  
39, 40, 41, 43, transaction, the address bits contain a physical address (32 bits).  
44, 45, 47, 48, During subsequent clock cycles, these same lines contain 32 bits of  
61, 62, 64, 65, data. A 21143 bus transaction consists of an address phase followed  
66, 68, 69, 70, by one or more data phases. The 21143 supports both read and write  
76, 77, 78, 80, bursts (in master operation only). Little and big endian byte ordering  
81, 82, 84, 85 can be used.  
ad<31:0>  
I/O  
aui_cd–  
aui_cd+  
aui_rd–  
aui_rd+  
aui_td–  
aui_td+  
I
I
138  
137  
140  
139  
143  
142  
Attachment unit interface receive collision differential negative data.  
Attachment unit interface receive collision differential positive data.  
Attachment unit interface receive differential negative data.  
Attachment unit interface receive differential positive data.  
Attachment unit interface transmit differential negative data.  
Attachment unit interface transmit differential positive data.  
I
I
O
O
Boot ROM address line bit 0. In a 256KB configuration, this pin also  
carries in two consecutive address cycles, boot ROM address bits 16  
and 17.  
br_a<0>/  
cb_pads_l  
O
O
88  
89  
This pin also determines the type of signals to use for the PCI/  
CardBus* output pins, either PCI or CardBus. By default, this pin  
selects PCI signaling. To select CardBus signaling, this pin must be  
connected to a pull-down resistor.  
Boot ROM address line bit 1. This pin also latches the boot ROM  
address and control lines by the two external latches.  
br_a<1>  
Boot ROM address and data multiplexed lines bits 7 through 0. In two  
consecutive address cycles, these lines contain the boot ROM  
address pins 7 through 2, oe_l and we_l in the first cycle; and these  
lines contain boot ROM address pins 15 through 8 in the second  
cycle. During the data cycle, bits 7 through 0 contain data.  
90, 91, 92, 93,  
96, 97, 98, 99  
br_ad<7:0>  
br_ce_l  
I/O  
O
87  
Boot ROM or external register chip enable.  
Bits 0 through 3 of the bus command and byte enable lines. Bus  
command and byte enable are multiplexed on the same PCI pins.  
During the address phase of the transaction, these 4 bits provide the  
c_be_l<3:0>  
I/O  
33, 49, 60, 75 bus command.  
During the data phase, these 4 bits provide the byte enable. The byte  
enable determines which byte lines carry valid data. For example, bit  
0 applies to byte 0, and bit 3 applies to byte 3.  
PCI/CardBus clock run indication. The host system asserts this signal  
to indicate normal operation of the clock. The host system deasserts  
clkrun_l when the clock is going to be stopped or slowed down to a  
nonoperational frequency.  
I/O  
clkrun_l  
86  
If the clock is needed by the 21143, the 21143 asserts clkrun_l,  
requesting normal clock operation to be maintained or restored.  
Otherwise, the 21143 allows the system to stop the clock. If this pin is  
not connected to the PCI/CardBus bus, it should be connected to a  
pull-down resistor.  
O/D  
10  
Preliminary Datasheet  
 
21143  
Table 4. Functional Description of 21143 Signals (Sheet 2 of 6)  
Signal  
Type  
Pin Number  
Description  
Device select is asserted by the target of the current bus access.  
When the 21143 is the initiator of the current bus access, it expects  
the target to assert devsel_l within 5 bus cycles, confirming the  
access. If the target does not assert devsel_l within the required bus  
cycles, the 21143 aborts the cycle. To meet the timing requirements,  
the 21143 asserts this signal in a medium speed (within 2 bus  
cycles).  
devsel_l  
I/O  
55  
The frame_l signal is driven by the bus master to indicate the  
beginning and duration of an access. The frame_l signal asserts to  
indicate the beginning of a bus transaction. While frame_l is  
asserted, data transfers continue. The frame_l signal deasserts to  
indicate that the next data phase is the final data phase transaction.  
frame_l  
I/O  
50  
This pin can be configured by software to be:  
A general-purpose pin that performs either input or output  
functions. This general-purpose pin can provide an interrupt  
when functioning as an input.  
A control pin that provides an AUI (10BASE5) or BNC  
(10BASE2) select line.  
gep<0>/  
aui_bnc  
I/O  
100  
This control pin is mainly used to enable the external BNC  
transceiver in 10BASE2 mode. When set, the 10BASE5 mode is  
selected. When reset, the 10BASE2 mode is selected.  
NOTE: This control pin is internally forced to the aui_bnc function  
when the 21143 is in remote wake-up-LAN mode.  
This pin can be configured by software to be:  
A general-purpose pin that performs either input or output  
functions. This general-purpose pin can provide an interrupt  
when functioning as an input.  
gep<1>/activ  
I/O  
101  
A status pin that provides an LED that indicates either receive or  
transmit activity.  
This pin can be configured by software to be:  
A general-purpose pin that performs either input or output  
functions.  
A status pin that provides an LED that indicates a receive packet  
has passed address recognition.  
gep<2>/  
rcv_match/  
wake  
If the PME_Enable bit (Func0_HwOptions<3>) in the serial ROM is  
set, this pin is forced to function as a wake-up event pin that can be  
connected to pin pme# of the PCI connector or pin cstschg of the  
CardBus connector. When the 21143 is in remote wake-up-LAN  
mode, this pin is used as an indicator that a Magic Packet* has been  
successfully detected. When this pin is in a wake function, bit  
MiscHwOptions<1> in the serial ROM determines the polarity. The  
PME function takes precedence over the Magic Packet indication  
function.  
I/O  
102  
This pin can be configured by software to be:  
A general-purpose pin that performs either input or output  
functions. When configured as an input pin in OnNow mode, this  
pin functions as link status. When used with an MII PHY device,  
this pin should be connected to the MII PHY link indication pin  
(the 21143 interprets link-pass when this pin is high). This pin  
should not be left unconnected if it is configured as an input in  
D1, D2 or D3 power states.  
gep<3>/link  
I/O  
103  
A status pin that provides an LED to indicate:  
–Network link integrity state for 10BASE-T or 100BASE-TX if  
Func1_Hw_Options<8> is cleared in the SROM.  
–Both network activity and network link integrity state if  
Func1_Hw_Options<8> is set in the SROM.  
Preliminary Datasheet  
11  
21143  
Table 4. Functional Description of 21143 Signals (Sheet 3 of 6)  
Signal  
gnt_l  
Type  
Pin Number  
Description  
Bus grant asserts to indicate to the 21143 that access to the bus is  
granted.  
I
21  
Initialization device select asserts to indicate that the host is issuing a  
configuration cycle to the 21143.  
idsel  
I
34  
Interrupt request asserts when one of the appropriate bits of CSR5  
sets and causes an interrupt, provided that the corresponding mask  
bit in CSR7 is not asserted. Interrupt request deasserts by writing a 1  
into the appropriate CSR5 bit.  
int_l  
iref  
O/D  
15  
If more than one interrupt bit is asserted in CSR5 and the host does  
not clear all input bits, the 21143 deasserts int_l for one cycle to  
support edge-triggered systems.  
I
108  
Current reference input for the analog phase-locked loop logic.  
Initiator ready indicates the bus master’s ability to complete the  
current data phase of the transaction.  
A data phase is completed on any rising edge of the clock when both  
irdy_l and target ready trdy_l are asserted. Wait cycles are inserted  
until both irdy_l and trdy_l are asserted together.  
irdy_l  
I/O  
51  
When the 21143 is the bus master, it asserts irdy_l during write  
operations to indicate that valid data is present on the 32-bit ad lines.  
During read operations, the 21143 asserts irdy_l to indicate that it is  
ready to accept data.  
In MII mode (CSR6<18>=1, CSR6<23>=0), this pin functions as the  
collision detect. When the external physical layer protocol (PHY)  
device detects a collision, it asserts this pin.  
mii_clsn/  
sym_rxd<4>  
In SYM mode (CSR6<18>=1, CSR6<23>=1), this pin functions as  
receive data. This line along with the four receive lines  
(sym_rxd<3:0>) provides five parallel data lines in symbol form. This  
data is controlled by an external physical layer medium-dependent  
(PMD) device and should be synchronized to the sym_rclk signal.  
I
I
118  
117  
In MII mode this pin functions as the carrier sense and is asserted by  
the PHY when the media is active.  
mii_crs/sd  
In SYM mode this pin functions as the signal detect indication. It is  
controlled by an external PMD device.  
Data valid is asserted by an external PHY when receive data is  
present on the mii_rxd lines and is deasserted at the end of the  
packet. This signal should be synchronized with the mii_rclk signal.  
mii_dv  
I
129  
134  
MII management data clock is sourced by the 21143 to the PHY  
devices as a timing reference for the transfer of information on the  
mii_mdio signal.  
mii_mdc  
O
MII management data input/output transfers control information and  
status between the PHY and the 21143.  
mii_mdio  
I/O  
I
135  
128  
Supports either the 25-MHz or 2.5-MHz receive clock. This clock is  
recovered by the PHY.  
mii/sym_rclk  
When used with an MII PHY device (CSR6<18>=1, CSR6<23>=0),  
this pin functions as receive error input. It is asserted when a data  
decoding error is detected by an external PHY device. This signal is  
synchronized to mii_rclk and can be asserted for a minimum of one  
receive clock. When asserted during a packet reception, it sets the  
cyclic redundancy check (CRC) error bit in the receive descriptor  
(RDES0).  
mii_rx_err/  
sel10_100  
I/O  
127  
When used with a SYM PHY device (CSR6<23>=1), this pin  
functions as select 10/100 output. The signal sel10_100 equals 1  
when the 21143 is in 100-Mb/s SYM mode (CSR6<18>=1) and  
equals 0 when the 21143 is in 10BASE-T/AUI mode (CSR6<18>=0).  
12  
Preliminary Datasheet  
21143  
Table 4. Functional Description of 21143 Signals (Sheet 4 of 6)  
Signal  
Type  
Pin Number  
Description  
Four parallel receive data lines. This data is driven by an external  
PHY that attached the media and should be synchronized with the  
mii_rclk signal.  
mii/  
130, 131,  
132,133,  
I
sym_rxd<3:0>  
Supports the 25-MHz or 2.5-MHz transmit clock supplied by the  
external PMD device. This clock should always be active.  
mii/sym_tclk  
I
124  
Four parallel transmit data lines. This data is synchronized to the  
assertion of the mii_tclk signal and is latched by the external PHY on  
the rising edge of the mii_tclk signal.  
mii/  
119, 120, 121,  
122  
O
sym_txd<3:0>  
In MII mode (CSR6<18>=1, CSR6<23>=0), this pin functions as  
transmit enable. It indicates that a transmission is active on the MII  
port to an external PHY device.  
mii_txen/  
sym_txd<4>  
O
123  
In SYM mode, this pin functions as transmit data. This line along with  
the four data transmit lines (sym_txd<3:0>) provides five parallel data  
lines in symbol form. The data is synchronized to the rising edge of  
the sym_tclk signal.  
Parity is calculated by the 21143 as an even parity bit for the 32-bit ad  
and 4-bit c_be_l lines.  
par  
I/O  
59  
19  
During address and data phases, parity is calculated on all the ad  
and c_be_l lines whether or not any of these lines carry meaningful  
information.  
The clock provides the timing for the 21143 related PCI bus  
transactions. All the bus signals are sampled on the rising edge of  
pci_clk. The supported range of the clock frequency is 20 MHz to  
33 MHz.  
pci_clk  
I
Parity error asserts when a data parity error is detected.  
The 21143 asserts perr_l when a data parity error is detected in either  
a master-read or a slave-write operation.  
When the 21143 is the bus master and a parity error is detected, the  
21143 asserts both CSR5 bit 13 (fatal bus error) and CFCS bit 24  
(data parity report). Next, it completes the current data burst  
transaction, then stops operation. After the host clears the fatal error  
bit in CSR5, the 21143 continues its operation.  
perr_l  
I/O  
57  
Bus request is asserted by the 21143 to indicate to the bus arbiter  
that it wants to use the bus.  
req_l  
rst_l  
O
I
22  
16  
Resets the 21143 to its initial state. This signal must be asserted for  
at least 10 active PCI clock cycles. When in the reset state, all PCI  
output pins are put into tristate and all PCI O/D signals are floated.  
If an address parity error is detected and CFCS bit 8 (serr_l enable) is  
enabled, 21143 asserts both serr_l (system error) and CFCS bit 30  
(signal system error).  
serr_l  
O/D  
58  
When an address parity error is detected, system error asserts two  
clocks after the failing address.  
Serial ROM clock signal. This pin provides a serial clock output for  
the serial ROM.  
sr_ck  
sr_cs  
sr_di  
sr_do  
O
O
O
I
114  
115  
113  
112  
Serial ROM chip-select signal. This pin provides a chip select for the  
serial ROM.  
Serial ROM data-in signal. This pin serially shifts the write data from  
the 21143 to the serial ROM device.  
Serial ROM data-out signal. This pin serially shifts the read data from  
the serial ROM device to the 21143.  
Preliminary Datasheet  
13  
21143  
Table 4. Functional Description of 21143 Signals (Sheet 5 of 6)  
Signal  
Type  
Pin Number  
Description  
Stop indicator indicates that the current target is requesting the bus  
master to stop the current transaction.  
stop_l  
I/O  
56  
The 21143 responds to the assertion of stop_l when it is the bus  
master, either to disconnect, retry, or abort.  
JTAG clock shifts state information and test data into and out of the  
21143 during JTAG test operations.  
tck  
I
11  
If the JTAG port is unused, this pin should be connected to vss.  
JTAG data in is used to serially shift test data and instructions into the  
21143 during JTAG test operations.  
tdi  
I
O
I
13  
14  
12  
10  
9
JTAG data out is used to serially shift test data out of the 21143  
during JTAG test operations.  
tdo  
JTAG test mode select controls the state operation of JTAG testing in  
the 21143.  
tms  
Twisted-pair negative differential receive data from the twisted-pair  
lines.  
tp_rd–  
tp_rd+  
I
Twisted-pair positive differential receive data from the twisted-pair  
lines.  
I
Twisted-pair negative differential transmit data. The positive and  
negative differential transmit data outputs are combined resistively  
outside the 21143 with equalization to compensate for intersymbol  
interference on the twisted-pair medium.  
tp_td–  
tp_td– –  
O
O
5
4
Twisted-pair positive differential transmit data. The positive and  
negative differential transmit data outputs are combined resistively  
outside the 21143 with equalization to compensate for intersymbol  
interference on the twisted-pair medium.  
tp_td+  
tp_td+ +  
O
O
6
7
Target ready indicates the target agent’s ability to complete the  
current data phase of the transaction.  
A data phase is completed on any clock when both trdy_l and irdy_l  
are asserted. Wait cycles are inserted until both irdy_l and trdy_l are  
asserted together.  
trdy_l  
I/O  
52  
When the 21143 is the bus master, target ready is asserted by the  
bus slave on the read operation, which indicates that valid data is  
present on the ad lines. During a write cycle, it indicates that the  
target is prepared to accept data.  
vcap_h  
vdd  
I
110  
Capacitor input for analog phase-locked loop logic.  
1, 2, 8, 18, 26,  
36, 37, 46, 54, 3.3-V supply input. These pins should be connected to the auxiliary  
67, 72, 73, 79, power, if such power exists. Otherwise, these pins should be  
95, 107, 125, connected to the main power.  
P
136, 141  
vddac  
P
P
109, 111  
20  
Supplies +3.3-V input for analog phase-locked loop logic.  
Supplies +5-V or +3.3-V reference for clamp logic.  
This pin is also used to identify the lack of main power when the  
auxiliary power is on. This pin should be connected to the main  
power.  
vdd_clamp  
3, 17, 30, 35,  
38, 42, 53, 63,  
vss  
P
I
71, 74, 83, 94, Ground pins.  
104, 116, 126,  
144  
20-MHz crystal input, or crystal oscillator input.This pin should always  
be provided with a clock.  
xtal1  
106  
14  
Preliminary Datasheet  
21143  
Table 4. Functional Description of 21143 Signals (Sheet 6 of 6)  
Signal  
xtal2  
Type  
Pin Number  
Description  
Crystal feedback output pin used for crystal connections only. If this  
pin is unused, then it should be unconnected.  
O
105  
2.3  
Pin Tables  
This section contains four types of pin tables:  
Table 5 lists the input pins.  
Table 6 lists the output pins.  
Table 7 lists the input/output pins.  
Table 8 lists the open drain pins.  
Table5. InputPins  
Signal  
Active Level  
Signal  
Active Level  
aui_cd–  
aui_cd+  
aui_rd–  
aui_rd+  
gnt_l  
Low  
High  
mii/sym_tclk  
pci_clk  
rst_l  
Low  
sr_do  
tck  
Low  
High  
idsel  
tdi  
iref  
tms  
High for mii_clsn,  
for sym_rxd<4>  
mii_clsn/sym_rxd<4>  
tp_rd–  
mii_crs/sd  
High  
High  
tp_rd+  
vcap_h  
xtal1  
mii_dv  
mii/sym_rclk  
mii/sym_rxd<3:0>  
Table 6. Output Pins  
Signal  
Active Level  
Signal  
Active Level  
aui_td–  
sr_cs  
sr_di  
High  
aui_td+  
br_a<1>  
High  
Low  
tdo  
br_ce_l  
tp_td–  
tp_td– –  
tp_td+  
mii_mdc  
mii/sym_txd<3:0>  
High for mii_txen,  
— for sym_txd<4>  
mii_txen/sym_txd<4>  
tp_td+ +  
req_l  
sr_ck  
Low  
xtal2  
Preliminary Datasheet  
15  
 
 
21143  
Table 7. Input/Output Pins  
Signal  
Active Level  
Signal  
Active Level  
— for gep<2>,  
high for  
ad<31:0>  
gep<2>/rcv_match/wake  
rcv_match,  
afor wake  
High for br_a<0>,  
low for cb_pads_l  
— for gep<3>,  
high for link  
br_a<0>/cb_pads_l  
gep<3>/link  
br_ad<7:0>  
clkrun_l  
irdy_l  
Low  
Low  
mii_mdio  
High for  
mii_rx_err,  
c_be_l<3:0>  
Low  
mii_rx_err/sel10_100  
— for sel10_100  
devsel_l  
Low  
Low  
par  
frame_l  
perr_l  
stop_l  
Low  
Low  
gep<0>/aui_bnc  
— for gep<1>,  
high for activ  
gep<1>/activ  
trdy_l  
Low  
a. The active level is controlled by bit MiscHwOptions<1> (PME_STSCHG) in the serial ROM.  
Table 8. Open Drain Pins  
Signal  
Active Level  
Signal  
Active Level  
int_l  
Low  
serr_l  
Low  
16  
Preliminary Datasheet  
21143  
2.4  
Signal Grouping by Function  
Table 9 lists the signals according to their interface function.  
.
Table 9. Signal Functions (Sheet 1 of 2)  
Interface  
Function  
Address and data  
Signals  
ad<31:0>, par  
gnt_l, req_l  
c_be_l<3:0>  
devsel_l, idsel  
perr_l, serr_l  
int_l  
Arbitration  
Bus command and byte enable  
Device select  
Error reporting  
PCI/CardBus  
Interrupt  
System  
pci_clk, rst_l  
Control signals  
frame_l, stop_l, irdy_l, trdy_l  
wake  
Power-management status  
Clock status  
clkrun_l  
Pad select  
cb_pads_l  
Transmit data lines  
Receive data lines  
Transmit, receive clocks  
Transmit enable  
Collision detect  
MII error reporting  
Data control  
mii/sym_txd<3:0>  
mii/sym_rxd<3:0>  
mii/sym_tclk, mii/sym_rclk  
mii_txen  
mii_clsn  
mii_rx_err  
MII/SYM  
network port  
mii_dv, mii_crs  
mii_mdc  
MII management data clock  
MII management data  
input/output  
mii_mdio  
Signal detection  
sd  
SYM mode data lines  
SYM mode 10/100 select  
JTAG test operations  
Serial ROM  
sym_rxd<4>, sym_txd<4>  
sel10_100  
Test access port  
Serial ROM port  
Boot ROM port  
tck, tdi, tdo, tms  
sr_ck, sr_cs, sr_di, sr_do  
br_a<1:0>, br_ad<7:0>, br_ce_l  
vdd_clamp  
ROM interface  
3.3-V or 5.0-V supply input  
3.3-V supply input  
Ground  
Power  
vdd, vddac  
vss  
General-purpose pins  
LED indicators  
gep<3:0>  
General-purpose  
port and LEDs  
activ, rcv_match, link  
aui_bnc  
10BASE5/10BASE2 select  
Preliminary Datasheet  
17  
 
21143  
Table 9. Signal Functions (Sheet 2 of 2)  
Interface  
Function  
Signals  
Analog phase-locked loop logic  
AUI collision data  
iref, vcap_h  
aui_cd–, aui_cd+  
aui_rd–, aui_rd+, aui_td–,  
aui_td+  
Network  
connection  
AUI transmit and receive data  
Crystal oscillator  
xtal1, xtal2  
Twisted-pair transmit and receive  
data  
tp_rd–, tp_rd+, tp_td–,  
tp_td– –, tp_td+, tp_td+ +  
18  
Preliminary Datasheet  
21143  
3.0  
Electrical and Environmental Specifications  
This section contains the electrical and environmental specifications for the 21143.  
Caution: Stresses greater than the maximum or less than the minimum ratings can cause permanent damage  
to the 21143. Exposure to the maximum or minimum ratings for extended periods of time lessen  
the reliability of the 21143.  
3.1  
Voltage Limit Ratings  
Table 10 lists the voltage limit ratings.  
.
Table 10. Voltage Limit Ratings  
Parameter  
Minimum  
Maximum  
Power supply voltage  
vdd_clamp (5.0 V)  
3.0 V  
4.75 V  
3.0 V  
3.6 V  
5.25 V  
3.6 V  
vdd_clamp (3.3 V)1  
ESD protection voltage  
2000 V  
1.  
In the 3.3-V signaling environment, vdd_clamp must not be greater than vdd + 0.3 V.  
3.2  
Temperature Limit Ratings  
Table 11 lists the temperature limit ratings.  
.
Table 11. Temperature Limit Ratings  
Parameter  
Minimum  
Maximum  
Storage temperature  
Operating temperature  
–55°C (–67°F)  
0°C (32°F)  
125°C (257°F)  
70°C (158°F)  
Preliminary Datasheet  
19  
 
 
21143  
3.3  
Power Specifications  
The values in Table 12 are based on a PCI or CardBus* clock frequency of 33 MHz and a  
network data rate of 10/100 Mb/s for MII for legacy power-saving modes.  
Table 12. Legacy Power-Saving Modes Specification  
Mode  
After power-up  
IDD1 (mA)  
Power1 (mW)  
IDD2(mA)  
Power2 (mW)  
54  
150  
85  
178  
495  
280  
82  
Normal  
Snooze  
Sleep  
230  
145  
115  
828  
522  
414  
25  
1.  
2.  
Typical: vdd = 3.3 V, Ta = 25°C  
Maximum: vdd = 3.6 V, Ta = 0°C  
The values in Table 13 are based on a PCI clock frequency of 25 MHz, vdd at 3.3 V, Ta at 25°C,  
and a network data rate of 10/100 Mb/s for ACPI modes.  
Table 13. ACPI Modes Power Specification  
Condition  
IDD (mA)  
Typical Power Consumption (mW)  
D0 normal, full network activity  
D0 snooze, 50% network activity  
D1 snooze, 50% network activity  
D2 snooze, PCI clock running  
D3 snooze, PCI clock stopped  
After power-up, CardBus pads  
145 mA  
130 mA  
118 mA  
109 mA  
102 mA  
51 mA  
479 mW  
429 mW  
389 mW  
356 mW  
337 mW  
168 mW  
3.4  
PCI Bus and CardBus Electrical Parameters  
This section describes the PCI Bus and CardBus characteristics for the 21143.  
20  
Preliminary Datasheet  
 
 
21143  
3.4.1  
PCI and CardBus I/O Voltage Specifications  
The 21143 meets the I/O voltage specifications listed in Table 14 and Table 15.  
Table 14. I/O Voltage Specifications for 5.0-V Levels  
.
Symbol  
Parameter  
Condition  
Minimum  
Maximum  
V
Input high voltage  
Input low voltage  
Input leakage current  
Output high voltage  
Output low voltage  
Pin capacitance  
2.0 V  
–0.5 V  
vdd_clamp + 0.5 V  
ih  
V
0.8 V  
±10 µA  
il  
I 1  
0.5 V<V <2.7 V  
i
in  
V
I
=–2 mA  
out  
2.4 V  
oh  
2
V
I
=3 mA, 6 mA  
0.55 V  
8 pF  
ol  
out  
Cap3  
5 pF  
1.  
2.  
Input leakage currents include high-impedance output leakage for all bidirectional buffers with tristate outputs.  
Signals without pull-up resistors must have 3-mA low output current. Signals requiring pull-up resistors (including  
frame_l, trdy_l, irdy_l, devsel_l, stop_l, serr_l, and perr_l) must have 6 mA.  
Parameter design guarantee.  
3.  
Table 15. I/O Voltage Specifications for 3.3-V Levels  
Symbol  
Parameter  
Condition  
Minimum  
Maximum  
V
V
Input high voltage  
Input low voltage  
Input leakage current  
Output high voltage  
Output low voltage  
Pin capacitance  
0.475*vdd_clamp  
vdd_clamp + 0.5 V  
0.325*vdd_clamp  
±70 µA  
ih  
–0.5 V  
il  
I 1  
0.0 V<V <vdd_clamp  
0.9*vdd_clamp  
i
in  
V
I
=–500 µA  
=1500 µA  
oh  
out  
out  
V
I
0.1*vdd_clamp  
8 pF  
ol  
Cap2  
5 pF  
1.  
2.  
Input leakage currents include high-impedance output leakage for all bidirectional buffers with tristate outputs.  
Parameter design guarantee.  
Preliminary Datasheet  
21  
 
 
21143  
3.4.2  
System Bus Reset  
System bus (PCI or CardBus) reset (rst_l) is an asynchronous signal that must be active for at least  
10 system bus (PCI or CardBus) clock (pci_clk) cycles. Figure 3 shows the reset timing  
characteristics, and Table 16 lists the reset signal limits.  
pci_clk  
10 pci_clk Cycles  
rst_l  
Internal Reset  
33 pci_clk Cycles  
A5477-01  
Figure 3. Reset Timing Diagram  
Table 16. Reset Timing Parameters  
Symbol  
Trst  
Parameter  
rst_l pulse width  
Minimum  
Maximum  
Condition  
pci_clk active  
10*pci_clk  
Not applicable  
3.4.3  
PCI and CardBus Clock Specifications  
The clock frequency range1 for PCI and CardBus is between 20 MHz and 33 MHz. Figure 4 shows  
the PCI and CardBus clock specification timing characteristics and the required measurement  
points for both the 5.0-V and 3.3-V signaling environments. Table 17 lists the frequency-derived  
clock specifications.  
1. The PCI and CardBus clock frequency is from dc to 33 MHz; network operational with the PCI or CardBus clock from 20 MHz to  
33 MHz.  
22  
Preliminary Datasheet  
 
 
21143  
Thigh  
5.0-V Clock  
2.0 V  
0.8 V  
Tlow  
Tr  
Tf  
3.3-V Clock  
0.475 * vdd_clamp  
0.325 * vdd_clamp  
Tcycle  
LJ03910A.AI4  
Figure 4. PCI and CardBus Clock Specification Timing Diagram  
Table 17. PCI and CardBus Clock Timing Specifications  
Symbol  
Tcycle  
Parameter  
Cycle time  
Minimum  
Maximum  
30 ns  
11 ns  
11 ns  
1 V/ns  
50 ns  
Thigh  
Tlow  
pci_clk high time  
pci_clk low time  
pci_clk slew rate  
Tr/Tf1  
4 V/ns  
1.  
Rise and fall times are specified in terms of the edge rate measured in V/ns. Parameter design guarantee.  
Preliminary Datasheet  
23  
21143  
3.4.4  
Other PCI and CardBus Signals  
Figure 5 shows the timing diagram characteristics for other PCI and CardBus signals and Table 18  
lists their timing specifications. This timing is identical to the timing for the general-purpose  
register signals.  
Vtest 1  
Clk  
Tval (max)  
Tval (min)  
Output  
Input  
Ton  
Toff  
Th  
Tsu  
1 Vtest is 1.5 V in a 5.0-V signaling environment and is 0.4 * vdd_clamp  
in a 3.3-V signaling environment.  
LJ04719A.AI4  
Figure 5. Timing Diagram for Other PCI and CardBus Signals  
Table 18. Other PCI and CardBus Signals’ Timing Specifications  
Symbol  
Parameter  
Minimum  
Maximum  
Tval1  
Ton1  
Toff4  
Tsu4  
Th  
clk-to-signal valid delay2  
2 ns  
2 ns  
11 ns  
Float-to-active delay from clk3  
Active-to-float delay from clk  
Input signal valid setup time before clk  
Input signal hold time from clk  
Output rise and fall slew rate5  
Output rise and fall slew rate6  
28 ns  
7 ns  
0 ns  
Slewr, Slewf4  
Slewr, Slewf4  
1 V/ns  
0.25 V/ns  
4 V/ns  
1 V/ns  
1.  
Load for this measurement is as specified in PCI Local Bus Specification, Revision 2.0 and PCI Local Bus Specification,  
Revision 2.1.  
Valid delays for PCI, selected by default when pin cb_pad_l is not pulled down externally.  
Valid delays for CardBus, selected by default when pin cb_pad_l is pulled down externally.  
Parameter design guarantee.  
2.  
3.  
4.  
5.  
6.  
Slew rate for PCI, selected by default when pin cb_pad_l is not pulled down externally.  
Slew rate for CardBus, selected when pin cb_pad_l is pulled down externally.  
24  
Preliminary Datasheet  
 
 
 
 
21143  
3.5  
AUI and Twisted-Pair DC Specifications  
Table 19 lists the dc specifications for the AUI and twisted-pair parts of the SIA.  
.
Table 19. AUI and Twisted-Pair DC Specifications  
Symbol  
Definition  
Condition  
Minimum  
Maximum  
Unit  
AUI Pins  
Transmit differential output  
voltage (aui_td±)  
V
78 termination  
78 termination  
78 termination  
±550  
–40  
–1  
±1200  
+40  
mV  
mV  
mA  
mV  
mV  
od  
Transmit differential output idle  
voltage (aui_td±)  
1
V
odi  
Transmit differential output idle  
current (aui_td±)  
1
I
+1  
odi  
Differential positive squelch  
threshold (aui_rd±)  
1
V
+
175  
–275  
275  
asq  
Differential negative squelch  
threshold (aui_rd± and aui_cd±)  
1
V
–175  
asq  
Transmit differential output  
undershoot voltage on return to  
zero (aui_td±)  
1
V
78 termination  
–100  
mV  
odu  
Twisted-Pair Interface Pins  
Output high voltage (tp_td± and  
tp_td±±)  
V
V
V
V
V
I
= –25 mA  
2.5  
0.5  
V
V
toh  
oh  
Output low voltage (tp_td± and  
tp_td±±)  
I
= 25 mA  
tol  
ol  
Differential positive squelch  
threshold (tp_rd±)  
1
1
+
300  
–520  
–3.1  
520  
–300  
3.1  
mV  
mV  
V
tsq  
tsq  
tdif  
Differential negative squelch  
threshold (tp_rd±)  
Differential input voltage range  
(tp_rd±)  
1
1.  
Parameter design guarantee.  
Preliminary Datasheet  
25  
 
21143  
3.6  
Serial Interface Attachment Specifications  
This section describes the dc specifications and timing limits of the SIA unit.  
3.6.1  
Serial Clock Timing  
Figure 6 shows the serial clock (TTL or CMOS) timing characteristics, and Table 20 lists the serial  
clock timing specifications.  
Tcl  
Tch  
Tcr  
Tcf  
Tcycle  
LJ-04101.AI4  
Figure 6. Serial Clock (XTAL) Timing Diagram  
Table 20. Serial Clock (XTAL) Timing Specifications  
Symbol  
Tcr1  
Parameter  
Minimum  
Maximum  
Rise time  
4 ns  
Tcf1  
Fall time  
4 ns  
Tcycle1  
Cycle time  
49.995 ns  
0.4*Tcycle  
0.4*Tcycle  
50.005 ns  
0.6*Tcycle  
0.6*Tcycle  
Tch  
Clock high time  
Clock low time  
Tcl  
1.  
Parameter design guarantee.  
26  
Preliminary Datasheet  
 
 
 
21143  
3.6.2  
Internal SIA Mode AUI Timing—Transmit  
Figure 7 shows the internal SIA transmit timing characteristics for the AUI, and Table 21 lists the  
internal SIA transmit timing limits for the AUI.  
1
0
1
1
ETD (End Transmit Delimiter)  
xtal1  
Tatp  
Tatf  
Tate  
Tatr  
aui_td+  
aui_td-  
ML11428A.AI4  
Figure 7. Internal SIA Mode AUI Timing Diagram—Transmit  
Table 21. Internal SIA Mode AUI Timing Specifications—Transmit  
Symbol  
Tatp  
Definition  
Minimum  
Maximum  
Unit  
aui_td+, aui_td– propagation delay from  
xtal1 fall  
30  
ns  
Tatr1  
Tatf1  
aui_td+, aui_td– rise time  
aui_td+, aui_td– fall time  
2
2
8
8
ns  
ns  
aui_td+, aui_td– rise and fall time mismatch  
(not shown)  
Tatm1  
Tate1  
1
ns  
ns  
aui_td± end transmit delimiter length  
345  
405  
1.  
Parameter design guarantee.  
Preliminary Datasheet  
27  
 
 
 
21143  
3.6.3  
Internal SIA Mode AUI Timing—Receive  
Figure 8 shows the internal SIA receive timing characteristics for the AUI, and Table 22 lists the  
internal SIA receive timing limits for the AUI.  
Tudm  
Tudf  
Vasq+  
Vasq-  
Tudo  
Tudm  
A5994-01  
Figure 8. Internal SIA Mode AUI Timing Diagram—Receive  
3.6.4  
Internal SIA Mode AUI Timing—Collision  
Figure 9 shows the internal SIA collision timing characteristics for the AUI, and Table 22 lists the  
internal SIA collision timing limits for the AUI.  
Tucf  
aui_cd+/-  
Vasq-  
Tuco  
Tucm  
MLO10338.AI4  
Figure 9. Internal SIA Mode AUI Timing Diagram—Collision  
Table 22. Internal SIA Mode AUI Timing Specifications—Receive and  
Collision  
Symbol  
Tudo  
Definition  
Minimum  
Maximum  
Unit  
aui_rd± start of frame pulse width  
15  
20  
ns  
aui_rd± delay between opposite squelch crossings  
not recognized as end of packet  
Tudm1  
140  
ns  
aui_rd± delay from last squelch crossing  
recognized as end of packet  
Tudf1  
Tuco  
150  
20  
25  
ns  
ns  
ns  
aui_cd± start of collision pulse width  
aui_cd± delay between squelch crossings  
not recognized as end of collision  
Tucm1  
140  
aui_cd± delay from last squelch crossing  
recognized as end of collision  
Tucf1  
150  
ns  
1.  
Parameter design guarantee.  
28  
Preliminary Datasheet  
 
 
 
 
21143  
3.6.5  
Internal SIA Mode 10BASE-T Interface Timing—Transmit  
Figure 10 shows the internal SIA transmit timing characteristics for the 10BASE-T interface, and  
Table 23 lists the internal SIA transmit limits.  
1
0
1
1
ETD (End Transmit Delimiter)  
xtal1  
Tpdp  
Tpdf  
Tped  
Tpen  
Tpdr  
tp_td+  
tp_td--  
tp_td-  
Tpdc  
Tpdc  
tp_td++  
ML11429A AI4  
Figure 10. Internal SIA Mode 10BASE-T Interface Timing Diagram—  
Transmit  
t
Table 23. Internal SIA Mode 10BASE-T Interface Timing Specifications—Transmit  
Symbol  
Definition  
Minimum Maximum  
Unit  
Tpdp  
tp_td+, tp_td– propagation delay from xtal1 fall  
tp_td+, tp_td++, tp_td–, tp_td– – rise time  
tp_td+, tp_td++, tp_td–, tp_td– – fall time  
2
30  
8
ns  
ns  
ns  
Tpdr1  
Tpdf1  
2
8
tp_td+, tp_td++, tp_td–, tp_td– – rise and fall time  
mismatch (not shown)  
Tpdm1  
1
ns  
Tpdc1  
Tped1  
Tpen1  
tp_td+ to tp_td– – and tp_td– to tp_td++ delay  
tp_td± end transmit delimiter length  
46  
54  
ns  
ns  
ns  
295  
245  
355  
305  
tp_td++/– – end transmit delimiter length  
1.  
Parameter design guarantee.  
Preliminary Datasheet  
29  
 
 
21143  
3.6.6  
Internal SIA Mode 10BASE-T Interface Timing—Receive  
Figure 11 shows the internal SIA receive timing characteristics for the 10BASE-T interface, and  
Table 24 lists the internal SIA receive limits for the 10BASE-T interface.  
Tsf  
Tsf  
Tdm  
Tdf  
Tsn  
Tsn  
Tsf  
Vtsq+  
Vtsq-  
tp_rd+/-  
Tsn  
Tsn  
Tdm  
Tsn  
Tsf  
Tsf  
A5478-01  
Figure 11. Internal SIA Mode 10BASE-T Interface Timing Diagram—  
Receive  
Table 24. Internal SIA Mode 10BASE-T Interface Timing Specifications—Receive  
Symbol  
Tsn1  
Definition  
Minimum  
Maximum  
Unit  
tp_rd± start of frame pulse width during smart squelch  
operation  
15  
20  
ns  
tp_rd± maximum delay between opposite squelch  
crossings not to turn smart squelch off  
Tsf1  
140  
150  
140  
ns  
ns  
ns  
tp_rd± delay between opposite squelch crossings not  
recognized as end of packet  
Tdm1  
Tdf1  
tp_rd± delay from last squelch crossing recognized as  
end of packet  
150  
1.  
Parameter design guarantee.  
30  
Preliminary Datasheet  
 
 
21143  
3.6.7  
Internal SIA Mode 10BASE-T Interface Timing—Idle Link Pulse  
Figure 12 shows the internal SIA idle link pulse timing characteristics for the 10BASE-T interface,  
and Table 25 lists the internal SIA idle link pulse limits for the 10BASE-T interface.  
tp_td+  
Tpld  
Tplp  
tp_td++  
tp_td-  
Tplc  
Tplc  
tp_td--  
MLO10341.AI4  
Figure 12. Internal SIA Mode 10BASE-T Interface Timing  
Diagram—Idle Link Pulse  
Table 25. Internal SIA Mode 10BASE-T Interface Timing Specifications—Idle Link  
Pulse  
Symbol  
Tpld1  
Definition  
Minimum  
Maximum  
Unit  
tp_td+ idle link pulse width  
80  
40  
8
120  
60  
ns  
ns  
Tplc1  
tp_td++ and tp_td– – idle link pulse width  
Idle link pulse period  
Tplp1  
24  
ms  
1.  
Parameter design guarantee.  
Preliminary Datasheet  
31  
 
 
21143  
3.7  
MII Interface Specifications  
Table 26 lists the specifications for the MII interface.  
Table 26. MII Interface  
Symbol  
Definition  
Condition  
Minimum  
Maximum  
Unit  
V
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
I
= –4 mA  
= 4 mA  
2.4  
0.4  
V
V
oh  
oh  
V
I
ol  
ol  
V
2.0  
V
ih  
il  
V
0.8  
10.0  
V
I
V
V
= vcc or vss  
–10.0  
µA  
in  
in  
Maximum tristate  
output leakage  
current  
I
= vdd or vss  
–10.0  
10.0  
µA  
oz  
in  
3.8  
MII/SYM Port Timing  
This section describes the MII/SYM port timing limits.  
3.8.1  
MII/SYM 10/100-Mb/s and 10-Mb/s Timing—Transmit  
Figure 13 shows the MII/SYM port transmit timing characteristics, and Table 27 lists the MII/SYM  
port transmit timing limits.  
32  
Preliminary Datasheet  
 
21143  
Tcc  
Tcr  
Tcf  
Tcl  
Tch  
mii/sym_tclk  
1
2
3
4
5
Trv  
mii/sym_txd<3:0>  
mii_txen  
Trh  
LJ-04944.AI4  
Figure 13. MII/SYM Port Timing Diagram—Transmit  
Table 27. MII/SYM Port Timing Limits—Transmit  
Symbol  
Tcc1  
Definition  
mii/sym_tclk cycle  
Minimum  
Typical  
Maximum  
Unit  
14t2  
14t2  
40t2  
8
26t2  
26t2  
ns  
ns  
ns  
ns  
ns  
Tch  
mii/sym_tclk high time  
mii/sym_tclk low time  
mii/sym_tclk rise time  
mii/sym_tclk fall time  
Tcl  
Tcr3  
Tcf3  
8
mii_tclk rise to mii_txen valid time or  
mii/sym_tclk rise  
to mii/sym_txd valid time  
Trv4  
Trh  
5
20  
ns  
ns  
mii_txen hold after mii_tclk  
rise time  
1.  
±50 parts per million.  
t=1 for 100-Mb/s operation; t=10 for 10-Mb/s operation.  
Parameter design guarantee.  
The transmit data (mii/sym_txd) and transmit enable (mii_txen) output pins are driven internally from the rising edge  
of mii/sym_tclk.  
2.  
3.  
4.  
Preliminary Datasheet  
33  
 
 
21143  
3.8.2  
MII/SYM 10/100-Mb/s Timing—Receive  
Figure 14 shows the MII/SYM port receive timing characteristics, and Table 28 lists the MII/SYM  
port receive timing limits.  
Tcc  
Tcr  
Tcf  
Tcl  
Tch  
mii/sym_rclk  
Tth  
Tts  
mii/sym_rxd<3:0>  
mii_dv  
LJ-04998.AI4  
Figure 14. MII/SYM Port Timing Diagram—Receive  
Table 28. MII/SYM Port Timing Limits—Receive  
Symbol  
Definition  
mii/sym_rclk cycle time  
Minimum  
Typical  
Maximum  
Unit  
Tcc1  
Tc  
14t2  
14t2  
40t2  
8
26t2  
26t2  
ns  
ns  
ns  
ns  
ns  
mii/sym_rclk high time  
mii/sym_rclk low time  
mii/sym_rclk rise time  
mii/sym_rclk fall time  
Tcl  
Tcr3  
Tcf3  
8
mii/sym_rxd setup (both rise and fall  
transactions) to mii/sym_rclk rise time or  
mii_dv setup (both rise and fall transactions)  
to mii_rclk rise time  
Tts4  
8
ns  
ns  
mii/sym_rxd hold (both rise and fall  
transactions) after mii/sym_rclk rise time or  
mii_dv hold (both rise and fall transactions)  
after mii_rclk rise time  
Tth  
10  
1.  
±50 parts per million.  
t=1 for 100-Mb/s operation; t=10 for 10-Mb/s operation.  
Parameter design guarantee.  
The receive data (mii/sym_rxd) and data valid (mii_dv) input pins are latched internally on the rising edge of mii/  
sym_rclk.  
2.  
3.  
4.  
34  
Preliminary Datasheet  
 
 
 
 
21143  
3.8.3  
SYM 10/100-Mb/s Timing—Signal Detect  
Figure 15 shows the SYM port signal detect timing characteristics, and Table 29 lists the SYM port  
signal detect timing limits.  
sym_rclk  
sd  
1
2
3
4
5
Tts  
Tth  
LJ-04945.AI4  
Figure 15. SYM Port Timing Diagram—Signal Detect  
Table 29. SYM Port Timing Limits—Signal Detect  
Symbol  
Definition  
Minimum  
Maximum  
Units  
sd setup (both rise and fall transactions) to  
sym_rclk fall time  
Tts1  
10  
ns  
sd hold (both rise and fall transactions) after  
sym_rclk fall time  
Tth1  
12  
ns  
1.  
Input signal detect (sd) is latched internally on the falling edge of sym_rclk.  
3.8.4  
MII 10/100-Mb/s Timing—Receive Error  
Figure 16 shows the MII port receive error timing characteristics, and Table 30 lists the MII port  
receive error timing limits.  
mii_rclk  
1
2
3
4
5
Tts  
Tth  
mii_rx_err  
LJ03906A.AI4  
Figure 16. MII Port Timing Diagram—Receive Error  
Table 30. MII Port Timing Limits—Receive Error  
Symbol  
Tts1  
Tth1  
Definition  
Minimum  
Maximum  
Unit  
mii_rx_err setup (both rise and fall  
transactions) to mii_rclk rise time  
10  
ns  
mii_rx_err hold (both rise and fall  
transactions) after mii_rclk rise time  
10  
ns  
1.  
Input signal detect (mii_rx_err) is latched internally on the falling edge of mii_rclk.  
Preliminary Datasheet  
35  
 
 
 
 
21143  
3.8.5  
MII 10/100-Mb/s Timing—Carrier Sense and Collision  
Figure 17 shows the MII port carrier sense and collision timing characteristics, and Table 31 lists  
the MII port carrier sense and collision timing limits.  
mii_clsn  
mii_crs  
Tclh  
LJ-03929.AI4  
Figure 17. MII Port Timing Diagram—Carrier Sense and Collision  
Table 31. MII Port Timing Limits—Carrier Sense and Collision  
Symbol  
Tclh  
Definition  
Minimum  
Maximum  
Unit  
mii_crs, mii_clsn high time  
20  
ns  
3.9  
Boot ROM and Serial ROM Port Specification  
Table 32 lists the dc specifications for the boot ROM and serial ROM ports. These specifications  
apply in any mode in which the ports are used.  
Table 32. Boot ROM and Serial ROM Port DC Specifications  
Symbol  
Definition  
Condition  
Minimum  
Maximum  
Unit  
V
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
I
= –4 mA  
= 4 mA  
2.4  
0.4  
V
V
V
V
oh  
oh  
V
I
ol  
ol  
V
2.0  
ih  
il  
V
0.8  
Maximum tristate output  
leakage current  
1
I
V
= vdd or vss  
–10  
10  
µA  
oz  
out  
1.  
For sr_do and br_ce_l, the maximum value is 1000.0 mA.  
36  
Preliminary Datasheet  
 
 
 
21143  
3.10  
Boot ROM Port Timing  
This section describes the boot ROM port timing.  
3.10.1  
Boot ROM Read Timing  
Figure 18 shows the boot ROM read timing characteristics, and Table 33 lists the boot ROM read  
timing limits.  
Tads Tadh Tads Tadh Tavqv  
Address = <7:2>  
oe = O, we = 1  
Data <7:0>  
Valid  
br_ad<7:0>  
br_a<1>  
Address <15:8>  
Address <1>  
br_a<0>  
br_ce_l  
Address <17>  
Address <16>  
Telqx  
Address <0>  
Toh  
Tehqz  
Telqv  
Tavav  
A5993-01  
Figure 18. Boot ROM Read Timing Diagram  
Table 33. Boot ROM Read Timing Specifications  
Symbol  
Parameter  
Minimum  
Maximum  
Unit  
Tavav  
Tavqv  
Telqv  
Telqx1  
Tehqz1  
Toh  
Read cycle time  
240  
0
240  
240  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address to output delay  
br_ce_l to output delay  
br_ce_l to output low impedance  
br_ce_l going high to output high impedance  
Output hold from br_ce_l change  
Address setup to latch enable high  
Address hold from latch enable high  
0
55  
Tads  
30  
30  
Tadh  
1.  
Parameter design guarantee.  
Preliminary Datasheet  
37  
 
 
21143  
3.10.2  
Boot ROM Write Timing  
Figure 19 shows the boot ROM write timing characteristics, and Table 34 lists the boot ROM write  
timing limits.  
Tads  
Tadh  
Tads  
Tadh  
Address=<7:2>  
oe = 1, we = 0  
br_ad<7:0>  
br_a<1>  
Address<15:8>  
Data<7:0>  
Address<1>  
Address<0>  
br_a<0>  
br_ce_l  
Address<17>  
Address<16>  
Teleh  
Tehax  
Tehdx  
Tdveh  
Taveh  
Tavav  
A5479-01  
Figure 19. Boot ROM Write Timing Diagram  
Table 34. Boot ROM Write Timing Specifications  
Symbol1  
Parameter  
Minimum  
Unit  
Tavav  
Write cycle time  
240  
70  
50  
50  
10  
15  
30  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Teleh  
Taveh  
Tdveh  
Tehdx  
Tehax  
Tads  
br_ce_l pulse width  
Address setup to br_ce_l going high  
Data setup to br_ce_l going high  
Data hold from br_ce_l going high  
Address hold from br_ce_l high  
Address setup to latch enable high  
Address hold from latch enable high  
Tadh  
1.  
There are no maximum specifications.  
38  
Preliminary Datasheet  
 
 
21143  
3.11  
Serial ROM Port Timing  
Figure 20 shows the serial ROM port timing, and Table 35 lists the characteristics. This timing is  
identical to the timing for the MII management signals (mii_mdio and mii_mdc).  
sr_cs,  
sr_ck,  
sr_di,  
sr_do  
Tsr  
Tsf  
LJ-03909.AI4  
Figure 20. Serial ROM Port Timing Diagram  
Table 35. Serial ROM Port Timing Characteristics  
Symbol  
Definition  
Minimum  
Maximum  
Unit  
Tsr1  
Rise time  
Fall time  
10  
10  
ns  
ns  
Tsf1  
1.  
Parameter design guarantee.  
3.12  
External Register Timing  
Figure 21 shows the external register read timing characteristics, and Figure 22 shows the write  
timing characteristics. Table 36 lists the external register timing specifications for both read and  
write operations.  
DataValid  
br_ad<7:0>  
br_a<0>  
br_ce_l  
Tpd  
Tehqz  
LJ-05000.AI4  
Figure 21. External Register Read Timing Diagram  
Preliminary Datasheet  
39  
 
 
 
 
21143  
br_ad<7:0>  
br_a<0>  
Data<7:0>  
br_ce_l  
Teleh  
Ts  
Th  
LJ-05001.AI4  
Figure 22. External Register Write Timing Diagram  
Table 36. External Register Timing Specifications  
Symbol  
Parameter  
Minimum  
Maximum Unit  
Teleh  
br_ce_l pulse width  
240  
ns  
Read Timing  
Tpd  
br_ce_l low to br_ad<7:0> valid high  
20  
20  
ns  
ns  
Tehqz1  
Write Timing  
Ts  
br_ce_l high to br_ad<7:0> high impedance  
Data setup time prior to br_ce_l  
Data hold after br_ce_l high  
30  
30  
ns  
ns  
Th  
1.  
Parameter design guarantee.  
40  
Preliminary Datasheet  
21143  
3.13  
Joint Test Action Group—Test Access Port  
This section provides the joint test action group (JTAG) test access port specifications.  
3.13.1  
JTAG DC Specifications  
Table 37 lists the dc specifications for the JTAG pins  
.
Table 37. JTAG DC Specifications  
Symbol  
Definition  
Condition  
Minimum  
Maximum  
Unit  
V
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
I
= –4 mA  
= 4 mA  
2.4  
0.4  
V
V
V
V
oh  
oh  
V
I
ol  
ol  
V
2.0  
ih  
il  
V
0.8  
Input leakage current on pins  
with internal pull-ups (tdi and  
tms)  
I
0.0<V <vdd  
+20/–10001  
±20  
µA  
µA  
ip  
in  
Tristate output leakage  
current (tdo)  
I
0.0<V <vdd  
out  
oz  
1.  
For pins tdi and tms that have internal pull-ups, the leakage current can get to 1.0 mA when Vin = 0 V.  
Preliminary Datasheet  
41  
 
21143  
3.13.2  
JTAG Boundary-Scan Timing  
Figure 23 shows the JTAG boundary-scan timing, and Table 38 lists the interface signal timing  
relationships.  
Tck_cycle  
Tms_s  
Tdi_s  
Tck_f  
tck  
tms  
tdi  
Tms_h  
Tdi_h  
Tck_r  
Tdo_d  
tdo  
LJ-03908.AI4  
Figure 23. JTAG Boundary-Scan Timing Diagram  
Table 38. JTAG Interface Signal Timing Relationships  
Symbol  
Tms_s  
Parameter  
tms setup time  
Minimum  
Maximum  
Unit  
20  
5
20  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Tms_h  
Tdi_s  
tms hold time  
tdi setup time  
tdi hold time  
tdo delay time  
tck rise time  
tck fall time  
20  
5
Tdi_h  
Tdo_d  
Tck_r1  
Tck_f1  
Tck_cycle  
90  
3
tck cycle time  
1.  
Parameter design guarantee.  
42  
Preliminary Datasheet  
 
 
21143  
4.0  
Mechanical Specifications  
The 21143 is contained in either a 144-pin LQFP package type or a 144-pin MQFP package type.  
Figure 24 shows the mechanical layout of the LQFP, and Table 39 lists the LQFP package  
dimensions in millimeters.  
Figure 25 shows the mechanical layout of the MQFP, and Table 40 lists the MQFP package  
dimensions in millimeters.  
Preliminary Datasheet  
43  
21143  
- A -  
D
D1  
Pin 1  
b
144-Pin LQFP  
E1  
E
- B -  
e
A
See Detail "A"  
// 0.13  
C
Datum Plane  
Seating Plane  
- H -  
- C -  
M
S
S
B
ddd C A  
c c c  
C
(A) A2  
Detail "A"  
R
Notes: All dimensions are in millimeters.  
- Basic Dimension  
(
) - Reference Dimension  
L
A1  
0o - 7o  
(LL)  
c
LJ04510A .AI4  
Figure 24. 144-Pin LQFP Package  
44  
Preliminary Datasheet  
21143  
Table 39. 144-Pin LQFP Package Dimensions  
Symbol  
Dimension  
Value (mm)  
LL  
e
Lead length  
Lead pitch  
Foot length  
1.00 reference1  
0.50 BSC2  
L
0.45 minimum to 0.75 maximum  
1.60 maximum  
A
Package overall height  
Package standoff height  
Package thickness  
Lead width  
A1  
A2  
b
0.05 minimum  
1.35 minimum to 1.45 maximum  
0.17 minimum to 0.27 maximum  
0.09 minimum to 0.20 maximum  
0.08  
c
Lead thickness  
ccc  
ddd  
D
Coplanarity  
Lead skew  
0.08  
Package overall width  
Package width  
22.00 BSC  
D1  
E
20.00 BSC  
Package overall length  
Package length  
Ankle radius  
22.00 BSC  
E1  
R
20.00 BSC  
0.08 minimum to 0.20 maximum  
1.  
2.  
The value for this measurement is for reference only.  
ANSI Y14.5M–1982 American National Standard Dimensioning and Tolerancing, Section 1.3.2, defines Basic Dimension  
(BSC) as: A numerical value used to describe the theoretically exact size, profile, orientation, or location of a feature or datum  
target. It is the basis from which permissible variations are established by tolerances on other dimensions, in notes, or in fea-  
ture control frames.  
Preliminary Datasheet  
45  
21143  
- A -  
D
D1  
Pin 1  
b
144-Pin MQFP  
E1  
E
- B -  
e
A
See Detail "A"  
// 0.13  
C
Datum Plane  
Seating Plane  
- H -  
- C -  
M
S
S
B
ddd C A  
c c c  
C
(A) A2  
Detail "A"  
R
Note: All dimensions are in millimeters.  
- Basic Dimension  
(
) - Reference Dimension  
L
A1  
0o - 7o  
(LL)  
c
LJ04510B .AI4  
Figure 25. 144-Pin MQFP Package  
46  
Preliminary Datasheet  
21143  
Table 40. 144-Pin MQFP Package Dimensions  
Symbol  
Dimension  
Value (mm)  
LL  
e
Lead length  
Lead pitch  
Foot length  
1.60 reference1  
0.65 BSC2  
L
0.65 minimum to 1.03 maximum  
4.1 maximum  
A
Package overall height  
Package standoff height  
Package thickness  
Lead width  
A1  
A2  
b
0.25 minimum  
3.20 minimum to 3.60 maximum  
0.22 minimum to 0.40 maximum  
0.11 minimum to 0.23 maximum  
0.10  
c
Lead thickness  
ccc  
ddd  
D
Coplanarity  
Lead skew  
0.13  
Package overall width  
Package width  
31.20 BSC  
D1  
E
28.00 BSC  
Package overall length  
Package length  
Ankle radius  
31.20 BSC  
E1  
R
28.00 BSC  
0.13 minimum to 0.30 maximum  
1.  
2.  
The value for this measurement is for reference only.  
ANSI Y14.5M–1982 American National Standard Dimensioning and Tolerancing, Section 1.3.2, defines Basic Dimension  
(BSC) as: A numerical value used to describe the theoretically exact size, profile, orientation, or location of a feature or datum  
target. It is the basis from which permissible variations are established by tolerances on other dimensions, in notes, or in fea-  
ture control frames.  
Preliminary Datasheet  
47  
Support, Products, and Documentation  
If you need technical support, a Product Catalog, or help deciding which documentation best meets  
your needs, visit the Intel World Wide Web Internet site:  
http://www.intel.com  
Copies of documents that have an ordering number and are referenced in this document, or other  
Intel literature may be obtained by calling 1-800-332-2717 or by visiting Intel’s website for  
developers at:  
http://developer.intel.com  
You can also contact the Intel Massachusetts Information Line or the Intel Massachusetts Customer  
Technology Center. Please use the following information lines for support:  
For Documentation and General Information  
Intel Massachusetts Information Line  
United States:  
1–800–332–2717  
1–303-675-2148  
techdoc@intel.com  
Outside United States:  
Electronic mail address:  
For Technical Support  
Intel Massachusetts Customer Technology Center  
Phone (U.S. and international):  
Fax:  
1–978–568–7474  
1–978–568–6698  
techsup@intel.com  
Electronic mail address: