0
R
XC2C256 CoolRunner-II CPLD
0
0
DS094 (v2.7) March 7, 2005
Preliminary Product Specification
Features
Description
•
Optimized for 1.8V systems
The CoolRunner™-II 256-macrocell device is designed for
both high performance and low power applications. This
lends power savings to high-end communication equipment
and high speed to battery operated devices. Due to the low
power stand-by and dynamic operation, overall system reli-
ability is improved
-
-
As fast as 5.7 ns pin-to-pin delays
As low as 13 µA quiescent current
•
Industry’s best 0.18 micron CMOS CPLD
-
Optimized architecture for effective logic synthesis.
Refer to the CoolRunner™-II family data sheet for
architecture description.
This device consists of sixteen Function Blocks inter-con-
nected by a low power Advanced Interconnect Matrix (AIM).
The AIM feeds 40 true and complement inputs to each
Function Block. The Function Blocks consist of a 40 by 56
P-term PLA and 16 macrocells which contain numerous
configuration bits that allow for combinational or registered
modes of operation.
-
Multi-voltage I/O operation — 1.5V to 3.3V
•
•
Available in multiple package options
-
-
-
-
-
-
100-pin VQFP with 80 user I/O
144-pin TQFP with 118 user I/O
132-ball CP (0.5mm) BGA with 106 user I/O
208-pin PQFP with 173 user I/O
256-ball FT (1.0mm) BGA with 184 user I/O
Pb-free available for all packages
Additionally, these registers can be globally reset or preset
and configured as a D or T flip-flop or as a D latch. There
are also multiple clock signals, both global and local product
term types, configured on a per macrocell basis. Output pin
configurations include slew rate limit, bus hold, pull-up,
open drain and programmable grounds. A Schmitt-trigger
input is available on a per input pin basis. In addition to stor-
ing macrocell output states, the macrocell registers may be
configured as "direct input" registers to store signals directly
from input pins.
Advanced system features
-
Fastest in system programming
1.8V ISP using IEEE 1532 (JTAG) interface
·
-
-
-
IEEE1149.1 JTAG Boundary Scan Test
Optional Schmitt-trigger input (per pin)
Unsurpassed low power management
·
DataGATE enable (DGE) signal control
-
-
-
Two separate I/O banks
RealDigital 100% CMOS product term generation
Flexible clocking modes
Clocking is available on a global or Function Block basis.
Three global clocks are available for all Function Blocks as
a synchronous clock source. Macrocell registers can be
individually configured to power up to the zero or one state.
A global set/reset control line is also available to asynchro-
nously set or reset selected registers during operation.
Additional local clock, synchronous clock-enable, asynchro-
nous set/reset and output enable signals can be formed
using product terms on a per-macrocell or per-Function
Block basis.
·
·
·
Optional DualEDGE triggered registers
Clock divider (divide by 2,4,6,8,10,12,14,16)
CoolCLOCK
-
Global signal options with macrocell control
·
Multiple global clocks with phase selection per
macrocell
·
·
Multiple global output enables
Global set/reset
-
-
Advanced design security
PLA architecture
A DualEDGE flip-flop feature is also available on a per mac-
rocell basis. This feature allows high performance synchro-
nous operation based on lower frequency clocking to help
reduce the total power consumption of the device.
·
·
Superior pinout retention
100% product term routability across function
block
-
-
Open-drain output option for Wired-OR and LED
drive
Optional bus-hold, 3-state or weak pull-up on
selected I/O pins
Optional configurable grounds on unused I/Os
Mixed I/O voltages compatible with 1.5V, 1.8V,
2.5V, and 3.3V logic levels
Circuitry has also been included to divide one externally
supplied global clock (GCK2) by eight different selections.
This yields divide by even and odd clock frequencies.
The use of the clock divide (division by 2) and DualEDGE
flip-flop gives the resultant CoolCLOCK feature.
-
-
DataGATE is a method to selectively disable inputs of the
CPLD that are not of interest during certain points in time.
·
SSTL2-1, SSTL3-1, and HSTL-1 I/O compatibility
-
Hot pluggable
© 2005 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.
1
Preliminary Product Specification