GS880Z18/32/36BT-333/300/250/200/150
333 MHz–150 MHz
100-Pin TQFP
Commercial Temp
Industrial Temp
9Mb Pipelined and Flow Through
Synchronous NBT SRAM
2.5 V or 3.3 V V
DD
2.5 V or 3.3 V I/O
Sleep mode enable (ZZ) and Output Enable. Output Enable can
be used to override the synchronous control of the output
drivers and turn the RAM's output drivers off at any time.
Write cycles are internally self-timed and initiated by the rising
edge of the clock input. This feature eliminates complex off-
chip write pulse generation required by asynchronous SRAMs
and simplifies input signal timing.
Features
• NBT (No Bus Turn Around) functionality allows zero wait
read-write-read bus utilization; Fully pin-compatible with
both pipelined and flow through NtRAM™, NoBL™ and
ZBT™ SRAMs
• 2.5 V or 3.3 V +10%/–10% core power supply
• 2.5 V or 3.3 V I/O supply
• User-configurable Pipeline and Flow Through mode
• LBO pin for Linear or Interleave Burst mode
• Pin compatible with 2M, 4M, and 18M devices
• Byte write operation (9-bit Bytes)
• 3 chip enable signals for easy depth expansion
• ZZ Pin for automatic power-down
The GS880Z18/32/36BT may be configured by the user to
operate in Pipeline or Flow Through mode. Operating as a
pipelined synchronous device, meaning that in addition to the
rising edge triggered registers that capture input signals, the
device incorporates a rising-edge-triggered output register. For
read cycles, pipelined SRAM output data is temporarily stored
by the edge triggered output register during the access cycle
and then released to the output drivers at the next rising edge of
clock.
• JEDEC-standard 100-lead TQFP package
• RoHS-compliant 100-lead TQFP package available
Functional Description
The GS880Z18/32/36BT is implemented with GSI's high
performance CMOS technology and is available in a JEDEC-
standard 100-pin TQFP package.
The GS880Z18/32/36BT is a 9Mbit Synchronous Static
SRAM. GSI's NBT SRAMs, like ZBT, NtRAM, NoBL or
other pipelined read/double late write or flow through read/
single late write SRAMs, allow utilization of all available bus
bandwidth by eliminating the need to insert deselect cycles
when the device is switched from read to write cycles.
Because it is a synchronous device, address, data inputs, and
read/ write control inputs are captured on the rising edge of the
input clock. Burst order control (LBO) must be tied to a power
rail for proper operation. Asynchronous inputs include the
Paramter Synopsis
-333
-300
-250
-200
-150
Unit
tKQ
2.5
3.0
2.5
3.3
2.5
4.0
3.0
5.0
3.8
6.7
ns
ns
tCycle
Pipeline
3-1-1-1
Curr (x18)
Curr (x32/x36)
250
290
230
265
200
230
170
195
140
160
mA
mA
tKQ
4.5
4.5
5.0
5.0
5.5
5.5
6.5
6.5
7.5
7.5
ns
ns
tCycle
Flow Through
2-1-1-1
Curr (x18)
Curr (x32/x36)
200
230
185
210
160
185
140
160
128
145
mA
mA
Rev: 1.04c 1/2012
1/24
© 2001, GSI Technology
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.